50,859 research outputs found

    Collisional deexcitation of exotic hydrogen atoms in highly excited states. II. Cascade calculations

    Full text link
    The atomic cascades in mu-p and pbar-p atoms have been studied in detail using new results for the cross-sections of the scattering of highly excited exotic atoms from molecular hydrogen. The cascade calculations have been done with an updated version of the extended standard cascade model that computes the evolution in the kinetic energy from the beginning of the cascade. The resulting X-ray yields, kinetic energy distributions, and cascade times are compared with the experimental data.Comment: 13 pages, 23 figure

    Collisional deexcitation of exotic hydrogen atoms in highly excited states. I. Cross-sections

    Full text link
    The deexcitation of exotic hydrogen atoms in highly excited states in collisions with hydrogen molecules has been studied using the classical-trajectory Monte Carlo method. The Coulomb transitions with large change of principal quantum number n have been found to be the dominant collisional deexcitation mechanism at high n. The molecular structure of the hydrogen target is shown to be essential for the dominance of transitions with large \Delta n. The external Auger effect has been studied in the eikonal approximation. The resulting partial wave cross-sections are consistent with unitarity and provide a more reliable input for cascade calculations than the previously used Born approximation.Comment: 10 pages, 20 figure

    A solvable non-conservative model of Self-Organized Criticality

    Full text link
    We present the first solvable non-conservative sandpile-like critical model of Self-Organized Criticality (SOC), and thereby substantiate the suggestion by Vespignani and Zapperi [A. Vespignani and S. Zapperi, Phys. Rev. E 57, 6345 (1998)] that a lack of conservation in the microscopic dynamics of an SOC-model can be compensated by introducing an external drive and thereby re-establishing criticality. The model shown is critical for all values of the conservation parameter. The analytical derivation follows the lines of Broeker and Grassberger [H.-M. Broeker and P. Grassberger, Phys. Rev. E 56, 3944 (1997)] and is supported by numerical simulation. In the limit of vanishing conservation the Random Neighbor Forest Fire Model (R-FFM) is recovered.Comment: 4 pages in RevTeX format (2 Figures) submitted to PR

    Bayesian testing of many hypotheses Ă—\times many genes: A study of sleep apnea

    Full text link
    Substantial statistical research has recently been devoted to the analysis of large-scale microarray experiments which provide a measure of the simultaneous expression of thousands of genes in a particular condition. A typical goal is the comparison of gene expression between two conditions (e.g., diseased vs. nondiseased) to detect genes which show differential expression. Classical hypothesis testing procedures have been applied to this problem and more recent work has employed sophisticated models that allow for the sharing of information across genes. However, many recent gene expression studies have an experimental design with several conditions that requires an even more involved hypothesis testing approach. In this paper, we use a hierarchical Bayesian model to address the situation where there are many hypotheses that must be simultaneously tested for each gene. In addition to having many hypotheses within each gene, our analysis also addresses the more typical multiple comparison issue of testing many genes simultaneously. We illustrate our approach with an application to a study of genes involved in obstructive sleep apnea in humans.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS241 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore