6,479 research outputs found
The Cessation of Flickering during Dips in Cygnus X-1
We report the discovery of the cessation of flickering in dips in the black
hole candidate Cygnus X-1, detected for the first time in the ASCA observation
of May 9th., 1995. During this observation, particularly deep dipping took
place resulting in strong changes in hardness ratio corresponding to absorption
of the power law spectral component. The deadtime corrected light curve with
high time resolution clearly shows a dramatic decrease in the extent of
flickering in the band 0.7 - 4.0 keV during dipping, but in the band 4.0 - 10.0
keV, there is relatively little change. We show that the rms flickering
amplitude in the band 0.7 - 4.0 keV is proportional to the X-ray intensity in
this band which changes by a factor of almost three. This is direct evidence
that the strong Low State flickering is intrinsic to the power law emission; ie
takes place as part of the emission process. The rms amplitude is proportional
to the intensity in the low energy band, except for a possible deviation from
linearity at the lower intensities. If confirmed, this non-linearity could
imply a process such as electron scattering of radiation which will tend to
smear out the fluctuations, or a process of fluctuation generation which
depends on radial position in the source. Thus timing observations during
absorption dips can give information about the source region and may place
constraints on its size.Comment: 6 pages including 4 figures, accepted for publication in
Astrophysical Journal Letter
Developing a framework for the analysis of power through depotentia
Stakeholder participation in tourism policy-making is usually perceived as providing a means of empowerment. However participatory processes drawing upon stakeholders from traditionally empowered backgrounds may provide the means of removing empowerment from stakeholders. Such an outcome would be in contradiction to the claims that participatory processes improve both inclusivity and sustainability. In order to form an understanding of the sources through which empowerment may be removed, an analytical perspective has been developed deriving from LukesĂŻÂżÂœs views of power dating from 1974. This perspective considers the concept of depotentia as the removal of ĂŻÂżÂœpower toĂŻÂżÂœ without speculating upon the underlying intent and also provides for the multidimensionality of power to be examined within a single study. The application of this analytical perspective has been tested upon findings of the government-commissioned report of the Countryside and Community Research Unit in 2005. The survey and report investigated the progress of Local Access Forums in England created in response to the Countryside and Rights of Way Act 2000. Consideration of the data from this perspective permits the classification of individual sources of depotentia which can each be addressed and potentially enable stakeholder groups to reverse loss of empowerment where it has occurred
ASMs and Operational Algorithmic Completeness of Lambda Calculus
We show that lambda calculus is a computation model which can step by step
simulate any sequential deterministic algorithm for any computable function
over integers or words or any datatype. More formally, given an algorithm above
a family of computable functions (taken as primitive tools, i.e., kind of
oracle functions for the algorithm), for every constant K big enough, each
computation step of the algorithm can be simulated by exactly K successive
reductions in a natural extension of lambda calculus with constants for
functions in the above considered family. The proof is based on a fixed point
technique in lambda calculus and on Gurevich sequential Thesis which allows to
identify sequential deterministic algorithms with Abstract State Machines. This
extends to algorithms for partial computable functions in such a way that
finite computations ending with exceptions are associated to finite reductions
leading to terms with a particular very simple feature.Comment: 37 page
Multiple haplotype-resolved genomes reveal population patterns of gene and protein diplotypes
To fully understand human biology and link genotype to phenotype, the phase of DNA variants must be known. Here we present a comprehensive analysis of haplotype-resolved genomes to assess the nature and variation of haplotypes and their pairs, diplotypes, in European population samples. We use a set of 14 haplotype-resolved genomes generated by fosmid clone-based sequencing, complemented and expanded by up to 372 statistically resolved genomes from the 1000 Genomes Project. We find immense diversity of both haploid and diploid gene forms, up to 4.1 and 3.9 million corresponding to 249 and 235 per gene on average. Less than 15% of autosomal genes have a predominant form. We describe a âcommon diplotypic proteomeâ, a set of 4,269 genes encoding two different proteins in over 30% of genomes. We show moreover an abundance of cis configurations of mutations in the 386 genomes with an average cis/trans ratio of 60:40, and distinguishable classes of cis- versus trans-abundant genes. This work identifies key features characterizing the diplotypic nature of human genomes and provides a conceptual and analytical framework, rich resources and novel hypotheses on the functional importance of diploidy
Complement System Part I ĂąâŹâ Molecular Mechanisms of Activation and Regulation
Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins and the membrane attack complex. We will also discuss the importance of structure-function relationships using the example of atypical hemolytic uremic syndrome. Lastly we will discuss the development and benefits of therapies using complement inhibitors
Rms-flux relation of Cyg X-1 with RXTE: dipping and nondipping cases
The rms (root mean square) variability is the parameter for understanding the
emission temporal properties of X-ray binaries (XRBs) and active galactic
nuclei (AGN).
The rms-flux relation with Rossi X-ray Timing Explorer (RXTE) data for the
dips and nondip of black hole Cyg X-1 has been investigated in this paper. Our
results show that there exist the linear rms-flux relations in the frequency
range 0.1-10 Hz for the dipping light curve. Moreover, this linear relation
still remains during the nondip regime, but with the steeper slope than that of
the dipping case in the low energy band. For the high energy band, the slopes
of the dipping and nondipping cases are hardly constant within errors. The
explanations of the results have been made by means of the ``Propagating
Perturbation'' model of Lyubarskii (1997).Comment: 15 pages, 12 figures, Accepted for publication in Astrophysics &
Space Scienc
Distributed top-k aggregation queries at large
Top-k query processing is a fundamental building block for efficient ranking in a large number of applications. Efficiency is a central issue, especially for distributed settings, when the data is spread across different nodes in a network. This paper introduces novel optimization methods for top-k aggregation queries in such distributed environments. The optimizations can be applied to all algorithms that fall into the frameworks of the prior TPUT and KLEE methods. The optimizations address three degrees of freedom: 1) hierarchically grouping input lists into top-k operator trees and optimizing the tree structure, 2) computing data-adaptive scan depths for different input sources, and 3) data-adaptive sampling of a small subset of input sources in scenarios with hundreds or thousands of query-relevant network nodes. All optimizations are based on a statistical cost model that utilizes local synopses, e.g., in the form of histograms, efficiently computed convolutions, and estimators based on order statistics. The paper presents comprehensive experiments, with three different real-life datasets and using the ns-2 network simulator for a packet-level simulation of a large Internet-style network
- âŠ