4,696 research outputs found

    Perfluoroalkyl polytriazines containing pendent iododifluoromethyl groups

    Get PDF
    New perfluoroalkyl polytriazines containing pendent iododifluoromethyl groups are prepared by the reaction of perfluoroalkyl dinitriles with ammonia to form poly(imidoylamidines), followed by the cyclization of the imidoylamidine groups with, e.g., various mixtures of a perfluoroacyl fluoride with an omega iodoperfluoroacyl fluoride. The polytriazines obtained can be cured by heat which causes crosslinking at the iododifluoromethyl groups by elimination of iodine and formation of carbon-to-carbon bonds

    Perfluoro (Imidoylamidine) diamidines

    Get PDF
    Perfluoroether triazine elastomers having improved properties are prepared from oligomeric imidoylamidines that were in turn, prepared by the process of: (1) reacting a perfluorodinitrile with liquid ammonia to yield a perfluorodiamidine, (2) isolating the perfluorodiamidine, (3) reacting the isolated diamidine with a perfluorodinitrile to yield a perfluoro(imidoylamidine) dinitrile, and then repeating the steps to sequentially grow an oligomer of desired molecular size. The isolated amidine and nitrile intermediates are also disclosed. The elastomers can be fashioned into seals, gaskets, and sealing components and the like

    Process for preparing perfluorotriazine elastomers and precursors thereof

    Get PDF
    Perfluoroether triazine elastomers having improved properties and utility in seals, gaskets, sealing components and the like are prepared from oligomeric imidoylamidines that have, in turn, been prepared by the process of (1) reacting a perfluorodinitrile with liquid ammonia to yield a perfluorodiamidine, (2) isolating the perfluorodiamidine, (3) reacting the isolated diamidine with a perfluorodinitrile to yield a perfluoror(imidoylamidine) dinitrile, and then repeating step (1), (2), and (3) to sequentially grow an oligomer of desired molecular size. The isolated amidine and nitrile intermediates are also described

    Improving the Robustness and Accuracy of Crime Prediction with the Self-Exciting Point Process Through Isotropic Triggering

    Get PDF
    The self-exciting point process (SEPP) is a model of the spread of crime in space and time, incorporating background and triggering processes. It shows promising predictive performance and forms the basis of a popular commercial software package, however few detailed case studies describing the application of the SEPP to crime data exist in the scientific literature. Using open crime data from the City of Chicago, USA, we apply the SEPP to crime prediction of assaults and burglaries in nine distinct geographical regions of the city. The results indicate that the algorithm is not robust to certain features of the data, generating unrealistic triggering functions in various cases. A simulation study is used to demonstrate that this outcome is associated with a reduction in predictive accuracy. Analysing the second-order spatial properties of the data demonstrates that the failures in the algorithm are correlated with anisotropy. A modified version of the SEPP model is developed in which triggering is non-directional. We show that this provides improved robustness, both in terms of the triggering structure and the predictive accuracy

    Tornadoes and Cyclones

    Get PDF

    Preparation of perfluorinated 1,2,4-oxadiazoles

    Get PDF
    Fluorinated alkyl or alkylether 1,2,4 oxadiazole compounds are prepared by cyclizing the corresponding alkyl or alkylether imidoyl amidoximes in vacuo or in an inert atmosphere at a temperature within the range of 40 C to 100 C. for a period of 8 to 144 hours in the presence of an acid compound which can accept ammonia to form a salt. The imidoyl amidoximes usable in this process are either polymeric or nonpolymeric. The products, when polymeric, have excellent heat, chemical and solvent resistance

    Novel evaluation metrics for sparse spatio-temporal point process hotspot predictions - a crime case study

    Get PDF
    Many physical and sociological processes are represented as discrete events in time and space. These spatio-temporal point processes are often sparse, meaning that they cannot be aggregated and treated with conventional regression models. Models based on the point process framework may be employed instead for prediction purposes. Evaluating the predictive performance of these models poses a unique challenge, as the same sparseness prevents the use of popular measures such as the root mean squared error. Statistical likelihood is a valid alternative, but this does not measure absolute performance and is therefore difficult for practitioners and researchers to interpret. Motivated by this limitation, we develop a practical toolkit of evaluation metrics for spatio-temporal point process predictions. The metrics are based around the concept of hotspots, which represent areas of high point density. In addition to measuring predictive accuracy, our evaluation toolkit considers broader aspects of predictive performance, including a characterisation of the spatial and temporal distributions of predicted hotspots and a comparison of the complementarity of different prediction methods. We demonstrate the application of our evaluation metrics using a case study of crime prediction, comparing four varied prediction methods using crime data from two different locations and multiple crime types. The results highlight a previously unseen interplay between predictive accuracy and spatio-temporal dispersion of predicted hotspots. The new evaluation framework may be applied to compare multiple prediction methods in a variety of scenarios, yielding valuable new insight into the predictive performance of point process-based prediction

    The 4D geometric quantities versus the usual 3D quantities. The resolution of Jackson's paradox

    Full text link
    In this paper we present definitions of different four-dimensional (4D) geometric quantities (Clifford multivectors). New decompositions of the torque N and the angular momentum M (bivectors) into 1-vectors N_{s}, N_{t} and M_{s}, M_{t} respectively are given. The torques N_{s}, N_{t} (the angular momentums M_{s}, M_{t}), taken together, contain the same physical information as the bivector N (the bivector M). The usual approaches that deal with the 3D quantities E\mathbf{E}, B\mathbf{B}, F\mathbf{F}, L\mathbf{L}, N\mathbf{N}, etc. and their transformations are objected from the viewpoint of the invariant special relativity (ISR). In the ISR it is considered that 4D geometric quantities are well-defined both theoretically and \emph{experimentally} in the 4D spacetime. This is not the case with the usual 3D quantities. It is shown that there is no apparent electrodynamic paradox with the torque, and that the principle of relativity is naturally satisfied, when the 4D geometric quantities are used instead of the 3D quantities.Comment: 13 pages, revte

    Predictive Crime Mapping: Arbitrary Grids or Street Networks?

    Get PDF
    OBJECTIVES: Decades of empirical research demonstrate that crime is concentrated at a range of spatial scales, including street segments. Further, the degree of clustering at particular geographic units remains noticeably stable and consistent; a finding that Weisburd (Criminology 53:133–157, 2015) has recently termed the ‘law of crime concentration at places’. Such findings suggest that the future locations of crime should—to some extent at least—be predictable. To date, methods of forecasting where crime is most likely to next occur have focused either on area-level or grid-based predictions. No studies of which we are aware have developed and tested the accuracy of methods for predicting the future risk of crime at the street segment level. This is surprising given that it is at this level of place that many crimes are committed and policing resources are deployed. METHODS: Using data for property crimes for a large UK metropolitan police force area, we introduce and calibrate a network-based version of prospective crime mapping [e.g. Bowers et al. (Br J Criminol 44:641–658, 2004)], and compare its performance against grid-based alternatives. We also examine how measures of predictive accuracy can be translated to the network context, and show how differences in performance between the two cases can be quantified and tested. RESULTS: Findings demonstrate that the calibrated network-based model substantially outperforms a grid-based alternative in terms of predictive accuracy, with, for example, approximately 20 % more crime identified at a coverage level of 5 %. The improvement in accuracy is highly statistically significant at all coverage levels tested (from 1 to 10 %). CONCLUSIONS: This study suggests that, for property crime at least, network-based methods of crime forecasting are likely to outperform grid-based alternatives, and hence should be used in operational policing. More sophisticated variations of the model tested are possible and should be developed and tested in future research

    Simplified multitarget tracking using the PHD filter for microscopic video data

    Get PDF
    The probability hypothesis density (PHD) filter from the theory of random finite sets is a well-known method for multitarget tracking. We present the Gaussian mixture (GM) and improved sequential Monte Carlo implementations of the PHD filter for visual tracking. These implementations are shown to provide advantages over previous PHD filter implementations on visual data by removing complications such as clustering and data association and also having beneficial computational characteristics. The GM-PHD filter is deployed on microscopic visual data to extract trajectories of free-swimming bacteria in order to analyze their motion. Using this method, a significantly larger number of tracks are obtained than was previously possible. This permits calculation of reliable distributions for parameters of bacterial motion. The PHD filter output was tested by checking agreement with a careful manual analysis. A comparison between the PHD filter and alternative tracking methods was carried out using simulated data, demonstrating superior performance by the PHD filter in a range of realistic scenarios
    • …
    corecore