49,435 research outputs found

    On the Differential Rotation of Massive Main Sequence Stars

    Full text link
    To date, asteroseismology has provided core to surface differential rotation measurements in eight main-sequence stars. These stars, ranging in mass from \sim1.5-9MM_\odot, show rotation profiles ranging from uniform to counter-rotation. Although they have a variety of masses, these stars all have convective cores and overlying radiative regions, conducive to angular momentum transport by internal gravity waves (IGW). Using two-dimensional (2D) numerical simulations we show that angular momentum transport by IGW can explain all of these rotation profiles. We further predict that should high mass, faster rotating stars be observed, the core to envelope differential rotation will be positive, but less than one.Comment: 5 pages, Accepted at ApJ

    A unified framework for Schelling's model of segregation

    Full text link
    Schelling's model of segregation is one of the first and most influential models in the field of social simulation. There are many variations of the model which have been proposed and simulated over the last forty years, though the present state of the literature on the subject is somewhat fragmented and lacking comprehensive analytical treatments. In this article a unified mathematical framework for Schelling's model and its many variants is developed. This methodology is useful in two regards: firstly, it provides a tool with which to understand the differences observed between models; secondly, phenomena which appear in several model variations may be understood in more depth through analytic studies of simpler versions.Comment: 21 pages, 3 figure

    Observational signatures of convectively driven waves in massive stars

    Get PDF
    We demonstrate observational evidence for the occurrence of convectively driven internal gravity waves (IGW) in young massive O-type stars observed with high-precision CoRoT space photometry. This evidence results from a comparison between velocity spectra based on 2D hydrodynamical simulations of IGW in a differentially-rotating massive star and the observed spectra.We also show that the velocity spectra caused by IGW may lead to detectable line-profile variability and explain the occurrence of macroturbulence in the observed line profiles of OB stars. Our findings provide predictions that can readily be tested by including a sample of bright slowly and rapidly rotating OB-type stars in the scientific programme of the K2 mission accompanied by high-precision spectroscopy and their confrontation with multi-dimensional hydrodynamic simulations of IGW for various masses and ages.Comment: 4 pages, 3 figures, accepted for publication in The Astrophysical Journal Letter

    Modeling pressure oscillations in Ramjets

    Get PDF
    Pressure oscillations in ramjet engines are approximated as one-dimensional motions and treated within linear acoustics. The exhaust nozzle is represented by the admittance function for a short choked nozzle. New results have been obtained for the quasi-steady response of a normal shock wave in the diffuser. Acoustic fields in the inlet region and in the combustion chamber are matched to provide an analytical expression of the criterion for linear stability. Combustion processes are accommodated but not treated in detail. As examples, data are discussed for two liquid-fueled engines, one having axial dump and one having side dumps

    Stochastic oscillations of adaptive networks: application to epidemic modelling

    Full text link
    Adaptive-network models are typically studied using deterministic differential equations which approximately describe their dynamics. In simulations, however, the discrete nature of the network gives rise to intrinsic noise which can radically alter the system's behaviour. In this article we develop a method to predict the effects of stochasticity in adaptive networks by making use of a pair-based proxy model. The technique is developed in the context of an epidemiological model of a disease spreading over an adaptive network of infectious contact. Our analysis reveals that in this model the structure of the network exhibits stochastic oscillations in response to fluctuations in the disease dynamic.Comment: 11 pages, 4 figure

    Gauge links, TMD-factorization, and TMD-factorization breaking

    Full text link
    In this section, we discuss some basic features of transverse momentum dependent, or unintegrated, parton distribution functions. In particular, when these correlation functions are combined in a factorization formulae with hard processes beyond the simplest cases, there are basic problems with universality and factorization. We discuss some of these problems as well as the opportunities that they offer.Comment: 9 pages, 10 figures Gluons and the quark sea at high energies: distributions, polarization, tomograph

    Magnetohydrodynamic Simulations of the Atmosphere of HD 209458b

    Full text link
    We present the first three-dimensional magnetohydrodynamic (MHD) simulations of the atmosphere of HD 209458b which self-consistently include reduction of winds due to the Lorentz force and Ohmic heating. We find overall wind structures similar to that seen in previous models of hot Jupiter atmospheres, with strong equatorial jets and meridional flows poleward near the day side and equatorward near the night side. Inclusion of magnetic fields slows those winds and leads to Ohmic dissipation. We find wind slowing ranging from 10%-40% for reasonable field strengths. We find Ohmic dissipation rates ~10^17 W at 100 bar, orders of magnitude too small to explain the inflated radius of this planet. Faster wind speeds, not achievable in these anelastic calculations, may be able to increase this value somewhat, but likely will not be able to close the gap necessary to explain the inflated radius. We demonstrate that the discrepancy between the simulations presented here and previous models is due to inadequate treatment of magnetic field geometry and evolution. Induced poloidal fields become much larger than those imposed, highlighting the need for a self-consistent MHD treatment of these hot atmospheres.Comment: 6 pages, 4 figures, accepted at ApJ
    corecore