781 research outputs found

    Spin up and phase fluctuations in the timing of the accreting millisecond pulsar XTE J1807-294

    Get PDF
    We performed a timing analysis of the 2003 outburst of the accreting X-ray millisecond pulsar XTE J1807-294 observed by RXTE. Using recently refined orbital parameters we report for the first time a precise estimate of the spin frequency and of the spin frequency derivative. The phase delays of the pulse profile show a strong erratic behavior superposed to what appears as a global spin-up trend. The erratic behavior of the pulse phases is strongly related to rapid variations of the light curve, making it very difficult to fit these phase delays with a simple law. As in previous cases, we have therefore analyzed separately the phase delays of the first harmonic and of the second harmonic of the spin frequency, finding that the phases of the second harmonic are far less affected by the erratic behavior. In the hypothesis that the second harmonic pulse phase delays are a good tracer of the spin frequency evolution we give for the first time a estimation of the spin frequency derivative in this source. The source shows a clear spin-up of ν˙=2.5(7)×10−14\dot \nu = 2.5(7) \times 10^{-14} Hz sec−1^{-1} (1 σ\sigma confidence level). The largest source of uncertainty in the value of the spin-up rate is given by the uncertainties on the source position in the sky. We discuss this systematics on the spin frequency and its derivative.Comment: 17 pages, 4 figures, Accepted by Ap

    Measuring the spin up of the Accreting Millisecond Pulsar XTE J1751-305

    Full text link
    We perform a timing analysis on RXTE data of the accreting millisecond pulsar XTE J1751-305 observed during the April 2002 outburst. After having corrected for Doppler effects on the pulse phases due to the orbital motion of the source, we performed a timing analysis on the phase delays, which gives, for the first time for this source, an estimate of the average spin frequency derivative = (3.7 +/- 1.0)E-13 Hz/s. We discuss the torque resulting from the spin-up of the neutron star deriving a dynamical estimate of the mass accretion rate and comparing it with the one obtained from X-ray flux. Constraints on the distance to the source are discussed, leading to a lower limit of \sim 6.7 kpc.Comment: 7 pages, 3 figures, Accepted for publication by MNRA

    Timing of the Accreting Millisecond Pulsar XTE J1814-338

    Get PDF
    We present a precise timing analysis of the accreting millisecond pulsar XTE J1814-338 during its 2003 outburst, observed by RXTE. A full orbital solution is given for the first time; Doppler effects induced by the motion of the source in the binary system were corrected, leading to a refined estimate of the orbital period, P_orb=15388.7229(2)s, and of the projected semimajor axis, a sini/c= 390.633(9) lt-ms. We could then investigate the spin behaviour of the accreting compact object during the outburst. We report here a refined value of the spin frequency (nu=314.35610879(1) Hz) and the first estimate of the spin frequency derivative of this source while accreting (nu^dot=(-6.7 +/- 0.7) 10^(-14) Hz/s). This spin down behaviour arises when both the fundamental frequency and the second harmonic are taken into consideration. We discuss this in the context of the interaction between the disc and the quickly rotating magnetosphere, at accretion rates sufficiently low to allow a threading of the accretion disc in regions where the Keplerian velocity is slower than the magnetosphere velocity. We also present indications of a jitter of the pulse phases around the mean trend, which we argue results from movements of the accreting hotspots in response to variations of the accretion rate.Comment: 7 pages, 4 figures, Accepted for publication by MNRA

    Discovery of periodic dips in the light curve of GX 13+1: the X-ray orbital ephemeris of the source

    Get PDF
    The bright low-mass X-ray binary (LMXB) GX 13+1 is one of the most peculiar Galactic binary systems. A periodicity of 24.27 d with a formal statistical error of 0.03 d was observed in its power spectrum density obtained with RXTE All Sky Monitor (ASM) data spanning 14 years. Starting from a recent study, indicating GX 13+1 as a possible dipping source candidate, we systematically searched for periodic dips in the X-ray light curves of GX 13+1 from 1996 up to 2013 using RXTE/ASM, and MAXI data to determine for the first time the X-ray orbital ephemeris of GX 13+1. We searched for a periodic signal in the ASM and MAXI light curves, finding a common periodicity of 24.53 d. We folded the 1.3-5 keV and 5-12.1 keV ASM light curves and the 2-4 and 4-10 keV MAXI light curves at the period of 24.53 d finding a periodic dip. To refine the value of the period we used the timing technique dividing the ASM light curve in eight intervals and the MAXI light curve in two intervals, obtaining four and two dip arrival times from the ASM and MAXI light curves, respectively. We improved the X-ray position of GX 13+1 using a recent Chandra observation. The new X-ray position is discrepant by \sim 7\arcsec from the previous one, while it is compatible with the infrared and radio counterpart positions. We detected an X-ray dip, that is totally covered by the Chandra observation, in the light curve of GX 13+1 and showed, a-posteriori, that it is a periodic dip. We obtained seven dip arrival times from ASM, MAXI, and Chandra light curves. We calculated the delays of the detected dip arrival times with respect to the expected times for a 24.52 d periodicity. Fitting the delays with a linear function we find that the orbital period and the epoch of reference of GX 13+1 are 24.5274(2) days and 50,086.79(3) MJD, respectively.(Abridged)Comment: 12 pages, including 16 figures. Accepted for publication in A&

    X-ray spectroscopy of the ADC source X1822-371 with Chandra and XMM-Newton

    Get PDF
    The eclipsing low-mass X-ray binary X1822-371 is the prototype of the accretion disc corona (ADC) sources. We analyse two Chandra observations and one XMM-Newton observation to study the discrete features and their variation as a function of the orbital phase, deriving constraints on the temperature, density, and location of the plasma responsible for emission lines. The HETGS and XMM/Epic-pn observed X1822-371 for 140 and 50 ks, respectively. We extracted an averaged spectrum and five spectra from five selected orbital-phase intervals that are 0.04-0.25, 0.25-0.50, 0.50-0.75, 0.75-0.95, and, finally, 0.95-1.04; the orbital phase zero corresponds to the eclipse time. All spectra cover the energy band between 0.35 and 12 keV. We confirm the presence of local neutral matter that partially covers the X-ray emitting region; the equivalent hydrogen column is 5×10225 \times 10^{22} cm−2 ^{-2} and the covered fraction is about 60-65%. We identify emission lines from highly ionised elements, and a prominent fluorescence iron line associated with a blending of FeI-FeXV resonant transitions. The transitions of He-like ions show that the intercombination dominates over the forbidden and resonance lines. The line fluxes are the highest during the orbital phases between 0.04 and 0.75. We discuss the presence of an extended, optically thin corona with optical depth of about 0.01 that scatters the X-ray photons from the innermost region into the line of sight. The photoionised plasma producing most of the observed lines is placed in the bulge at the outer radius of the disc distant from the central source of 6×10106 \times 10^{10} cm. The OVII and the fluorescence iron line are probably produced in the photoionised surface of the disc at inner radii. (Abridged)Comment: 18 pages including 12 figures. Accepted for publication in A&

    Timing of the accreting millisecond pulsar IGR~J17511--3057

    Get PDF
    {Timing analysis of Accretion-powered Millisecond Pulsars (AMPs) is a powerful tool to probe the physics of compact objects. The recently discovered \newigrj is the 12 discovered out of the 13 AMPs known. The Rossi XTE satellite provided an extensive coverage of the 25 days-long observation of the source outburst.} {Our goal is to investigate the complex interaction between the neutron star magnetic field and the accretion disk, determining the angular momentum exchange between them. The presence of a millisecond coherent flux modulation allows us to investigate such interaction from the study of pulse arrival times. In order to separate the neutron star proper spin frequency variations from other effects, a precise set of orbital ephemeris is mandatory.} {Using timing techniques, we analysed the pulse phase delays fitting differential corrections to the orbital parameters. To remove the effects of pulse phase fluctuations we applied the timing technique already successfully applied to the case of an another AMP, XTE J1807-294.} {We report a precise set of orbital ephemeris. We demonstrate that the companion star is a main sequence star. We find pulse phase delays fluctuations on the first harmonic with a characteristic amplitude of about 0.05, similar to what also observed in the case of the AMP XTE J1814-338. For the second time an AMP shows a third harmonic detected during the entire outburst. The first harmonic phase delays show a puzzling behaviour, while the second harmonic phase delays show a clear spin-up. Also the third harmonic shows a spin-up, although not highly significant (3σ\sigma c.l.). The presence of a fourth harmonic is also reported. In the hypothesis that the second harmonic is a good tracer of the spin frequency of the neutron star, we find a mean spin frequency derivative for this source of \np{1.65(18)}{-13} Hz s−1^{-1}.} (continue ...)Comment: 9 pages, 12 figures, A&A accepted on 23/10/201

    Performance Evaluation of an Hybrid Mesh and Sensor Network

    Get PDF

    Chandra X-ray spectroscopy of a clear dip in GX 13+1

    Get PDF
    The source GX 13+1 is a persistent, bright Galactic X-ray binary hosting an accreting neutron star. It shows highly ionized absorption features, with a blueshift of ∼\sim 400 km s−1^{-1} and an outflow-mass rate similar to the accretion rate. Many other X-ray sources exhibit warm absorption features, and they all show periodic dipping behavior at the same time. Recently, a dipping periodicity has also been determined for GX 13+1 using long-term X-ray folded light-curves, leading to a clear identification of one of such periodic dips in an archival Chandra observation. We give the first spectral characterization of the periodic dip of GX 13+1 found in this archival Chandra observation performed in 2010. We used Chandra/HETGS data (1.0-10 keV band) and contemporaneous RXTE/PCA data (3.5-25 keV) to analyze the broadband X-ray spectrum. We adopted different spectral models to describe the continuum emission and used the XSTAR-derived warm absorber component to constrain the highly ionized absorption features. The 1.0-25 keV continuum emission is consistent with a model of soft accretion-disk emission and an optically thick, harder Comptonized component. The dip event, lasting ∼\sim 450 s, is spectrally resolved with an increase in the column density of the neutral absorber, while we do not find significant variations in the column density and ionization parameter of the warm absorber with respect to the out-of-dip spectrum. We argue that the very low dipping duty-cycle with respect to other sources of the same class can be ascribed to its long orbital period and the mostly neutral bulge, that is relatively small compared with the dimensions of the outer disk radius.Comment: 13 pages, 15 figures, accepted for publication in Astronomy and Astrophysic

    Order in the Chaos: Spin-up and Spin-down during the 2002 Outburst of SAX J1808.4–3658

    Get PDF
    We present a timing analysis of the 2002 outburst of the accreting millisecond pulsar SAX J1808.4-3658. A study of the phase delays of the entire pulse profile shows a behavior that is surprising and difficult to interpret: superposed to a general trend, a big jump by about 0.2 in phase is visible, starting at day 14 after the beginning of the outburst. An analysis of the pulse profile indicates the presence of a significant first harmonic. Studying the fundamental and the first harmonic separately, we find that the phase delays of the first harmonic are more regular, with no sign of the jump observed in the fundamental. The fitting of the phase delays of the first harmonic with a model which takes into account the observed exponential decay of the X-ray flux (and therefore of the mass accretion rate onto the neutron star) gives important information on the torque acting on the neutron star during the outburst. We find that the source shows spin-up in the first part of the outburst, while a spin-down dominates at the end. From these results we derive an estimate of the neutron star magnetic field strength
    • …
    corecore