1,387 research outputs found
Open up Internet Research
Nel 2007 il Times sceglieva l’utente del web come persona dell’anno: Yes, You.
You Control the Information Age. Welcome to Your World. Dal 2007 molta acqua sotto i
ponti della Rete è passata e, a otto anni da quella copertina, il nuovo mondo è cresciuto in
mole e complessità, così come si sono moltiplicati i tentativi da parte della ricerca, pubblica
e privata, di mettere ordine nella comprensione dei meccanismi che lo governano.
Obiettivo di questa rubrica è fornire alcuni primi riferimenti per orientarsi nel
mondo della ricerca e dello studio intorno alla Rete. Ognuno di questi costituisce un hub di
collegamento a network e comunità professionali ampie ed accreditate da cui imparare e
con cui confrontarsi
Multidimensional Binary Vector Assignment problem: standard, structural and above guarantee parameterizations
In this article we focus on the parameterized complexity of the
Multidimensional Binary Vector Assignment problem (called \BVA). An input of
this problem is defined by disjoint sets , each
composed of binary vectors of size . An output is a set of disjoint
-tuples of vectors, where each -tuple is obtained by picking one vector
from each set . To each -tuple we associate a dimensional vector by
applying the bit-wise AND operation on the vectors of the tuple. The
objective is to minimize the total number of zeros in these vectors. mBVA
can be seen as a variant of multidimensional matching where hyperedges are
implicitly locally encoded via labels attached to vertices, but was originally
introduced in the context of integrated circuit manufacturing.
We provide for this problem FPT algorithms and negative results (-based
results, [2]-hardness and a kernel lower bound) according to several
parameters: the standard parameter i.e. the total number of zeros), as well
as two parameters above some guaranteed values.Comment: 16 pages, 6 figure
Empirically modelled Pc3 activity based on solar wind parameters
It is known that under certain solar wind (SW)/interplanetary magnetic field (IMF) conditions (e.g. high SW speed, low cone angle) the occurrence of ground-level Pc3–4 pulsations is more likely. In this paper we demonstrate that in the event of anomalously low SW particle density, Pc3 activity is extremely low regardless of otherwise favourable SW speed and cone angle. We re-investigate the SW control of Pc3 pulsation activity through a statistical analysis and two empirical models with emphasis on the influence of SW density on Pc3 activity. We utilise SW and IMF measurements from the OMNI project and ground-based magnetometer measurements from the MM100 array to relate SW and IMF measurements to the occurrence of Pc3 activity. Multiple linear regression and artificial neural network models are used in iterative processes in order to identify sets of SW-based input parameters, which optimally reproduce a set of Pc3 activity data. The inclusion of SW density in the parameter set significantly improves the models. Not only the density itself, but other density related parameters, such as the dynamic pressure of the SW, or the standoff distance of the magnetopause work equally well in the model. The disappearance of Pc3s during low-density events can have at least four reasons according to the existing upstream wave theory: 1. Pausing the ion-cyclotron resonance that generates the upstream ultra low frequency waves in the absence of protons, 2. Weakening of the bow shock that implies less efficient reflection, 3. The SW becomes sub-Alfvénic and hence it is not able to sweep back the waves propagating upstream with the Alfvén-speed, and 4. The increase of the standoff distance of the magnetopause (and of the bow shock). Although the models cannot account for the lack of Pc3s during intervals when the SW density is extremely low, the resulting sets of optimal model inputs support the generation of mid latitude Pc3 activity predominantly through upstream waves
Empirically modelled Pc3 activity based on solar wind parameters
It is known that under certain solar wind (SW)/interplanetary magnetic
field (IMF) conditions (e.g. high SW speed, low cone angle) the occurrence of
ground-level Pc3–4 pulsations is more likely. In this paper we demonstrate
that in the event of anomalously low SW particle density, Pc3 activity is
extremely low regardless of otherwise favourable SW speed and cone angle. We
re-investigate the SW control of Pc3 pulsation activity through a statistical
analysis and two empirical models with emphasis on the influence of SW
density on Pc3 activity. We utilise SW and IMF measurements from the OMNI
project and ground-based magnetometer measurements from the MM100 array to
relate SW and IMF measurements to the occurrence of Pc3 activity. Multiple
linear regression and artificial neural network models are used in iterative
processes in order to identify sets of SW-based input parameters, which
optimally reproduce a set of Pc3 activity data. The inclusion of SW density
in the parameter set significantly improves the models. Not only the density
itself, but other density related parameters, such as the dynamic pressure of
the SW, or the standoff distance of the magnetopause work equally well in the
model. The disappearance of Pc3s during low-density events can have at least
four reasons according to the existing upstream wave theory: 1. Pausing the
ion-cyclotron resonance that generates the upstream ultra low frequency waves
in the absence of protons, 2. Weakening of the bow shock that implies less
efficient reflection, 3. The SW becomes sub-Alfvénic and hence it is not
able to sweep back the waves propagating upstream with the Alfvén-speed,
and 4. The increase of the standoff distance of the magnetopause (and of the
bow shock). Although the models cannot account for the lack of Pc3s during
intervals when the SW density is extremely low, the resulting sets of optimal
model inputs support the generation of mid latitude Pc3 activity
predominantly through upstream waves
The stellar content of low redshift BL Lac host galaxies from multicolour imaging
We present B-band imaging of 18 low redshift (z<0.3) BL Lac objects for which
their host galaxies were previously resolved in the R-band and the
near-infrared H-band. For a subset of the objects, also U- and V-band imaging
is presented. These data are used to investigate the blue-red-near-infrared
colours and the colour gradients of the host galaxies of BL Lacs in comparison
with other elliptical galaxies with and without nuclear activity. In all cases
galaxies are well represented by an elliptical model, with average absolute
magnitude M_B=-21.6+-0.7 and average scale length R_e=7.6+-3.2 kpc. The
best-fit B-band Kormendy relation is in reasonable agreement with that obtained
for normal ellipticals and radio galaxies. This structural and dynamical
similarity indicates that all massive elliptical galaxies can experience
nuclear activity without significant perturbation of their global structure.
The distributions of the integrated blue/near-infrared colour (with average
B-H=3.5+-0.5) and colour gradient (with average Delta(B-R)/Delta(log
r)=-0.14+-0.75) of the BL Lac hosts are much wider than those for normal
ellipticals, and most BL Lac objects have bluer hosts and/or steeper colour
gradients than those in normal ellipticals. The blue colours are likely caused
by a young stellar population component, and indicates a link between star
formation caused by an interaction/merging event and the onset of the nuclear
activity. This result is corroborated by stellar population modelling,
indicating a presence of young/intermediate age populations in the majority of
the sample, in agreement with low redshift quasar hosts. The lack of strong
signs of interaction may require a significant time delay between the event
with associated star formation episodes and the start of the nuclear activity.Comment: 16 pages, 10 figure
Probing the Environment with Galaxy Dynamics
I present various projects to study the halo dynamics of elliptical galaxies.
This allows one to study the outer mass and orbital distributions of
ellipticals in different environments, and the inner distributions of groups
and clusters themselves.Comment: 5 pages, 2 figs, to appear in Proc. ESO Workshop, Groups of Galaxies
in the Nearby Universe (5-9 Dec 2005), eds. I. Saviane, V. Ivanov & J.
Borissova (Springer-Verlag
Bioelectrochemical conversion of CO2 to value added product formate using engineered Methylobacterium extorquens
The conversion of carbon dioxide to formate is a fundamental step for building C1 chemical platforms. Methylobacterium extorquens AM1 was reported to show remarkable activity converting carbon dioxide into formate. Formate dehydrogenase 1 from M. extorquens AM1 (MeFDH1) was verified as the key responsible enzyme for the conversion of carbon dioxide to formate in this study. Using a 2% methanol concentration for induction, microbial harboring the recombinant MeFDH1 expressing plasmid produced the highest concentration of formate (26.6 mM within 21 hours) in electrochemical reactor. 60 ??M of sodium tungstate in the culture medium was optimal for the expression of recombinant MeFDH1 and production of formate (25.7 mM within 21 hours). The recombinant MeFDH1 expressing cells showed maximum formate productivity of 2.53 mM/g-wet cell/hr, which was 2.5 times greater than that of wild type. Thus, M. extorquens AM1 was successfully engineered by expressing MeFDH1 as recombinant enzyme to elevate the production of formate from CO2 after elucidating key responsible enzyme for the conversion of CO2 to formate
A Discrete Event Simulation model to evaluate the treatment pathways of patients with Cataract in the United Kingdom
Background The number of people affected by cataract in the United Kingdom (UK) is growing rapidly due to ageing population. As the only way to treat cataract is through surgery, there is a high demand for this type of surgery and figures indicate that it is the most performed type of surgery in the UK. The National Health Service (NHS), which provides free of charge care in the UK, is under huge financial pressure due to budget austerity in the last decade. As the number of people affected by the disease is expected to grow significantly in coming years, the aim of this study is to evaluate whether the introduction of new processes and medical technologies will enable cataract services to cope with the demand within the NHS funding constraints. Methods We developed a Discrete Event Simulation model representing the cataract services pathways at Leicester Royal Infirmary Hospital. The model was inputted with data from national and local sources as well as from a surgery demand forecasting model developed in the study. The model was verified and validated with the participation of the cataract services clinical and management teams. Results Four scenarios involving increased number of surgeries per half-day surgery theatre slot were simulated. Results indicate that the total number of surgeries per year could be increased by 40% at no extra cost. However, the rate of improvement decreases for increased number of surgeries per half-day surgery theatre slot due to a higher number of cancelled surgeries. Productivity is expected to improve as the total number of doctors and nurses hours will increase by 5 and 12% respectively. However, non-human resources such as pre-surgery rooms and post-surgery recovery chairs are under-utilized across all scenarios. Conclusions Using new processes and medical technologies for cataract surgery is a promising way to deal with the expected higher demand especially as this could be achieved with limited impact on costs. Non-human resources capacity need to be evenly levelled across the surgery pathway to improve their utilisation. The performance of cataract services could be improved by better communication with and proactive management of patients.Peer reviewedFinal Published versio
Direct Numerical Simulation of Acoustic Waves Interacting with a Shock Wave in a Quasi-1D Convergent-Divergent Nozzle Using an Unstructured Finite Volume Algorithm
Numerical simulation of a very small amplitude acoustic wave interacting with a shock wave in a quasi-1D convergent-divergent nozzle is performed using an unstructured finite volume algorithm with a piece-wise linear, least square reconstruction, Roe flux difference splitting, and second-order MacCormack time marching. First, the spatial accuracy of the algorithm is evaluated for steady flows with and without the normal shock by running the simulation with a sequence of successively finer meshes. Then the accuracy of the Roe flux difference splitting near the sonic transition point is examined for different reconstruction schemes. Finally, the unsteady numerical solutions with the acoustic perturbation are presented and compared with linear theory results
Efficient CO2-Reducing Activity of NAD-Dependent Formate Dehydrogenase from Thiobacillus sp KNK65MA for Formate Production from CO2 Gas
NAD-dependent formate dehydrogenase (FDH) from Candida boidinii (CbFDH) has been widely used in various CO2 reduction systems but its practical applications are often impeded due to low CO2-reducing activity. In this study, we demonstrated superior CO2-reducing properties of FDH from Thiobacillus sp. KNK65MA (TsFDH) for production of formate from CO2 gas. To discover more efficient CO2-reducing FDHs than a reference enzyme e. CbFDH, five FDHs were selected with biochemical properties and then, their CO2-reducing activities were evaluated. All FDHs including CbFDH showed better CO2-reducing activities at acidic pHs than at neutral pHs and four FDHs were more active than CbFDH in the CO2 reduction reaction. In particular, the FDH from Thiobacillus sp. KNK65IVIA (TsFDH) exhibited the highest CO2-reducing activity and had a dramatic preference for the reduction reaction, i.e., a 84.2-fold higher ratio of CO2 reduction to formate oxidation in catalytic efficiency (k(cat)/K-B) compared to CbFDH. Formate was produced from CO2 gas using TsFDH and CbFDH, and TsFDH showed a 5.8-fold higher formate production rate than CbFDH. A sequence and structural comparison showed that FDHs with relatively high CO2-reducing activities had elongated N- and C-terminal loops. The experimental results demonstrate that TsFDH can be an alternative to CbFDH as a biocatalyst in CO2 reduction systemsope
- …
