7 research outputs found

    Spatial and temporal dynamics of malaria in Madagascar

    No full text
    Background: Malaria is one of the primary health concerns in Madagascar. Based on the duration and intensity of transmission, Madagascar is divided into five epidemiological strata that range from low to mesoendemic transmission. In this study, the spatial and temporal dynamics of malaria within each epidemiological zone were studied. Methods: The number of reported cases of uncomplicated malaria from 112 health districts between 2010 and 2014 were compiled and analysed. First, a Standardized Incidence Ratio was calculated to detect districts with anomalous incidence compared to the stratum-level incidence. Building on this, spatial and temporal malaria clusters were identified throughout the country and their variability across zones and over time was analysed. Results: The incidence of malaria increased from 2010 to 2014 within each stratum. A basic analysis showed that districts with more than 50 cases per 1000 inhabitants are mainly located in two strata: East and West. Lower incidence values were found in the Highlands and Fringe zones. The standardization method revealed that the number of districts with a higher than expected numbers of cases increased through time and expanded into the Highlands and Fringe zones. The cluster analysis showed that for the endemic coastal region, clusters of districts migrated southward and the incidence of malaria was the highest between January and July with some variation within strata. Conclusion: This study identified critical districts with low incidence that shifted to high incidence and district that were consistent clusters across each year. The current study provided a detailed description of changes in malaria epidemiology and can aid the national malaria programme to reduce and prevent the expansion of the disease by targeting the appropriate areas

    Variation in SARS-CoV-2 outbreaks across sub-Saharan Africa

    No full text
    A surprising feature of the SARS-CoV-2 pandemic to date is the low burdens reported in sub-Saharan Africa (SSA) countries relative to other global regions. Potential explanations (for example, warmer environments 1, younger populations 2–4) have yet to be framed within a comprehensive analysis. We synthesized factors hypothesized to drive the pace and burden of this pandemic in SSA during the period from 25 February to 20 December 2020, encompassing demographic, comorbidity, climatic, healthcare capacity, intervention efforts and human mobility dimensions. Large diversity in the probable drivers indicates a need for caution in interpreting analyses that aggregate data across low- and middle-income settings. Our simulation shows that climatic variation between SSA population centers has little effect on early outbreak trajectories; however, heterogeneity in connectivity, although rarely considered, is likely an important contributor to variance in the pace of viral spread across SSA. Our synthesis points to the potential benefits of context-specific adaptation of surveillance systems during the ongoing pandemic. In particular, characterizing patterns of severity over age will be a priority in settings with high comorbidity burdens and poor access to care. Understanding the spatial extent of outbreaks warrants emphasis in settings where low connectivity could drive prolonged, asynchronous outbreaks resulting in extended stress to health systems. </p

    High variation expected in the pace and burden of SARS-CoV-2 outbreaks across sub-Saharan Africa

    No full text
    A surprising feature of the SARS-CoV-2 pandemic to date is the low burdens reported in sub-Saharan Africa (SSA) countries relative to other global regions. Potential explanations (e.g., warmer environments1, younger populations2-4) have yet to be framed within a comprehensive analysis accounting for factors that may offset the effects of climate and demography. Here, we synthesize factors hypothesized to shape the pace of this pandemic and its burden as it moves across SSA, encompassing demographic, comorbidity, climatic, healthcare and intervention capacity, and human mobility dimensions of risk. We find large scale diversity in probable drivers, such that outcomes are likely to be highly variable among SSA countries. While simulation shows that extensive climatic variation among SSA population centers has little effect on early outbreak trajectories, heterogeneity in connectivity is likely to play a large role in shaping the pace of viral spread. The prolonged, asynchronous outbreaks expected in weakly connected settings may result in extended stress to health systems. In addition, the observed variability in comorbidities and access to care will likely modulate the severity of infection: We show that even small shifts in the infection fatality ratio towards younger ages, which are likely in high risk settings, can eliminate the protective effect of younger populations. We highlight countries with elevated risk of 'slow pace', high burden outbreaks. Empirical data on the spatial extent of outbreaks within SSA countries, their patterns in severity over age, and the relationship between epidemic pace and health system disruptions are urgently needed to guide efforts to mitigate the high burden scenarios explored here.</p

    Structural connectivity at a national scale: Wildlife corridors in Tanzania

    No full text
    Wildlife corridors can help maintain landscape connectivity but novel methods must be developed to assess regional structural connectivity quickly and cheaply so as to determine where expensive and time-consuming surveys of functional connectivity should occur. We use least-cost methods, the most accurate and up-to-date land conversion dataset for East Africa, and interview data on wildlife corridors, to develop a single, consistent methodology to systematically assess wildlife corridors at a national scale using Tanzania as a case study. Our research aimed to answer the following questions; (i) which corridors may still remain open (i.e. structurally connected) at a national scale, (ii) which have been potentially severed by anthropogenic land conversion (e.g., agriculture and settlements), (iii) where are other remaining potential wildlife corridors located, and (iv) which protected areas with lower forms of protection (e.g., Forest Reserves and Wildlife Management Areas) may act as stepping-stones linking more than one National Park and/or Game Reserve. We identify a total of 52 structural connections between protected areas that are potentially open to wildlife movement, and in so doing add 23 to those initially identified by other methods in Tanzanian Government reports. We find that the vast majority of corridors noted in earlier reports as "likely to be severed" have actually not been cut structurally (21 of 24). Nonetheless, nearly a sixth of all the wildlife corridors identified in Tanzania in 2009 have potentially been separated by land conversion, and a third now pass across lands likely to be converted to human use in the near future. Our study uncovers two reserves with lower forms of protection (Uvinza Forest Reserve in the west and Wami-Mbiki Wildlife Management Area in the east) that act as apparently crucial stepping-stones between National Parks and/or Game Reserves and therefore require far more serious conservation support. Methods used in this study are readily applicable to other nations lacking detailed data on wildlife movements and plagued by inaccurate land cover datasets. Our results are the first step in identifying wildlife corridors at a regional scale and provide a springboard for ground-based follow-up conservation
    corecore