493 research outputs found
Late Holocene palynology and palaeovegetation of tephra-bearing mires at Papamoa and Waihi Beach, western Bay of Plenty, North Island, New Zealand.
The vegetation history of two mires associated with Holocene dunes near the western Bay of Plenty coast, North Island, New Zealand, is deduced from pollen analysis of two cores. Correlation of airfall tephra layers in the peats, and radiocarbon dates, indicate that the mires at Papamoa and Waihi Beach are c. 4600 and c. 2900 conventional radiocarbon years old, respectively. Tephras used to constrain the chronology of the pollen record include Rotomahana (1886 AD), Kaharoa (700 yr B.P.), Taupo (Unit Y; 1850 yr B.P.), Whakaipo (Unit V; 2700 yr B.P.), Stent (Unit Q; 4000 yr B.P.), Hinemaiaia (Unit K; 4600 yr B.P.), and reworked Whakatane (c. 4800 yr B.P.) at Papamoa, and Kaharoa and Taupo at Waihi Beach. Peat accumulation rates at Papamoa from 4600 - 1850 yr B.P. range from 0.94 to 2.64 mm/yr (mean 1.37 mm/yr). At Waihi Beach, from 2900 yr B.P. - present day, they range from 0.11 to 0.21 mm/yr (mean 0.20 mm/yr). Peat accumulation at both sites was slowest from 1850 to 700 yr B.P., suggesting a drier overall climate during this interval. At both sites, the earliest organic sediments, which are underlain by marine or estuarine sands, yield pollen spectra indicating salt marsh or estuarine environments. Coastal vegetation communities declined at both sites, as sea level gradually fell or the coast prograded, and were eventually superseded by a low moor bog at Papamoa, and a mesotrophic swamp forest at Waihi Beach. These differences, and the marked variation in peat accumulation rates, probably reflect local hydrology and are unlikely to have been climatically controlled. The main regional vegetation during this period was mixed northern conifer-angiosperm forest. Kauri (Agathis australis) formed a minor component of these forests, but populations of this tree have apparently not expanded during the late Holocene at these sites, which are near its present southern limit. Occasional shortlived forest disturbances are detectable in these records, in particular immediately following the deposition of Taupo Tephra. However, evidence for forest clearance during the human era is blurred by the downward dislocation of modern adventi ve pollen at these sites, preventing the clear differentiation of the Polynesian and European eras
Macrofossils and pollen representing forests of the pre-Taupo volcanic eruption (c. 1850 yr BP) era at Pureora and Benneydale, central North Island, New Zealand.
Micro- and macrofossil data from the remains of forests overwhelmed and buried at Pureora and Benneydale during the Taupo eruption (c. 1850 conventional radiocarbon yr BP) were compared. Classification of relative abundance data separated the techniques, rather than the locations, because the two primary clusters comprised pollen and litter/wood. This indicates that the pollen:litter/wood within-site comparisons (Pureora and Benneydale are 20 km apart) are not reliable. Plant macrofossils represented mainly local vegetation, while pollen assemblages represented a combination of local and regional vegetation. However, using ranked abundance and presence/absence data, both macrofossils and pollen at Pureora and Benneydale indicated conifer/broadleaved forest, of similar forest type and species composition at each site. This suggests that the forests destroyed by the eruption were typical of mid-altitude west Taupo forests, and that either data set (pollen or macrofossils) would have been adequate for regional forest interpretation.
The representation of c. 1850 yr BP pollen from the known buried forest taxa was generally consistent with trends determined by modern comparisons between pollen and their source vegetation, but with a few exceptions.
A pollen profile from between the Mamaku Tephra (c. 7250 yr BP) and the Taupo Ignimbrite indicated that the Benneydale forest had been markedly different in species dominance compared with the forest that was destroyed during the Taupo eruption. These differences probably reflect changes in drainage, and improvements in climate and/or soil fertility over the middle Holocene
Sedimentation in an artificial lake -Lake Matahina, Bay of Plenty
Lake Matahina, an 8 km long hydroelectric storage reservoir, is a small (2.5 km2), 50 m deep, warm monomictic, gorge-type lake whose internal circulation is controlled by the inflowing Rangitaiki River which drains a greywacke and acid volcanic catchment. Three major proximal to distal subenvironments are defined for the lake on the basis of surficial sediment character and dominant depositional process: (a) fluvial-glassy, quartzofeld-spathic, and lithic gravel-sand mixtures deposited from contact and saltation loads in less than 3 m depth; (b) (pro-)deltaic-quartzofeldspathic and glassy sand-silt mixtures deposited from graded and uniform suspension loads in 3-20 m depth; and (c) basinal-diatomaceous, argillaceous, and glassy silt-clay mixtures deposited from uniform and pelagic suspension loads in 20-50 m depth. The delta face has been prograding into the lake at a rate of 35-40 m/year and vertical accretion rates in pro-delta areas are 15-20 cm/year. Basinal deposits are fed mainly from river plume dispersion involving overflows, interflows, and underflows, and by pelagic settling, and sedimentation rates behind the dam have averaged about 2 cm/year. Occasional fine sand layers in muds of basinal cores attest to density currents or underflows generated during river flooding flowing the length of the lake along a sublacustrine channel marking the position of the now submerged channel of the Rangitaiki River
Chlorine Dioxide Is a Size-Selective Antimicrobial Agent
Background / Aims: ClO2, the so-called "ideal biocide", could also be applied as an antiseptic if it was understood why the solution killing microbes rapidly does not cause any harm to humans or to animals. Our aim was to find the source of that selectivity by studying its reaction-diffusion mechanism both theoretically and experimentally. Methods: ClO2 permeation measurements through protein membranes were performed and the time delay of ClO2 transport due to reaction and diffusion was determined. To calculate ClO2 penetration depths and estimate bacterial killing times, approximate solutions of the reaction-diffusion equation were derived. In these calculations evaporation rates of ClO2 were also measured and taken into account. Results: The rate law of the reaction-diffusion model predicts that the killing time is proportional to the square of the characteristic size (e. g. diameter) of a body, thus, small ones will be killed extremely fast. For example, the killing time for a bacterium is on the order of milliseconds in a 300 ppm ClO2 solution. Thus, a few minutes of contact time (limited by the volatility of ClO2) is quite enough to kill all bacteria, but short enough to keep ClO2 penetration into the living tissues of a greater organism safely below 0.1 mm, minimizing cytotoxic effects when applying it as an antiseptic. Additional properties of ClO2, advantageous for an antiseptic, are also discussed. Most importantly, that bacteria are not able to develop resistance against ClO2 as it reacts with biological thiols which play a vital role in all living organisms. Conclusion: Selectivity of ClO2 between humans and bacteria is based not on their different biochemistry, but on their different size. We hope initiating clinical applications of this promising local antiseptic
Overweight, obesity, physical activity and sugar-sweetened beverage consumption in adolescents of Pacific islands: results from the Global School-Based Student Health Survey and the Youth Risk Behavior Surveillance System
Background Overweight, obesity and their consequences are challenges to sustainable social and economic development in Pacific island countries and territories (PICTs). Complementing previous analyses for adults, the purpose of this paper is to synthesise available data on overweight, obesity and their risk factors in adolescents in the region. The resulting Pacific perspective for the younger generation will inform both the national and regional public health response to the crisis of noncommunicable diseases. Methods We examined the prevalence of overweight, obesity, physical activity and carbonated sugar-sweetened beverage (SSB) consumption, by using published results of two cross-sectional surveys: the Global School-Based Student Health Survey (GSHS) and the Youth Risk Behavior Surveillance System (YRBSS). GSHS was conducted in ten PICTs between 2010 and 2013 and provided results for 13–15 year olds. YRBSS surveys, conducted repeatedly in five PICTs between 1999 and 2013, provided results for grade 9–12 students (approximately 14–18 years) and enabled examination of trends. Results Obesity prevalence ranged from 0 % in female students in Vanuatu to 40 % in males in Niue (GSHS). Among grade 9–12 students (YRBSS), obesity was highest in American Samoa (40 % of males; 37 % of females). Approximately 60 % of students in the Cook Islands, Niue and Tonga (GSHS) and American Samoa (YRBSS), were overweight. In both surveys, less than half of students reported engaging in sixty minutes of physical activity on at least 5 days of the past week. Daily consumption of carbonated SSBs in the past month was reported by over 42 % of students in six PICTs (GSHS), and in the past week by more than 18 % of students in three PICTs (YRBSS). In PICTs conducting YRBSS, obesity prevalence remained high or increased within the period 1999–2013.Conclusion There is a need for urgent action on overweight, obesity and their risk factors in Pacific youth. The multiple social, economic and physical determinants of this public health crisis must be addressed. This requires all sectors within government and society in PICTs to implement and evaluate policies that will protect and promote the health of their populations across the life course
Recommended from our members
Humans and fire: changing relations in early agricultural and built environments in the Zagros, Iran, Iraq
Fire-centred studies have recently been highlighted as powerful avenues for investigation of energy flows and relations between humans, materials, environments and other species. The aim in this paper is to evaluate this potential first by reviewing the diverse theories and methods that can be applied to investigate the ecological and social significance of anthropogenic fire, and second by applying these to new and existing data sets in archaeology. This paper examines how fire-centred approaches can inform on one of the most significant step-changes in human lifeways and inter-relations with environment and other species – the transition from mobile hunting-gathering to more sedentary agriculture in a key heartland of change, the Zagros region of Iraq and Iran, c. 12,000–8,000 BP. In the review and case studies multiple links are investigated between human fire use and environment, ecology, energy use, technology, the built environment, health, social roles and relations, cultural practices and catastrophic event
Effect of doping on the dielectric properties of cerium oxide in the microwave and far-infrared frequency range
Cerium oxide (CeO2) has been prepared as a ceramic dielectric resonator by a conventional solid-state ceramic route. The sintered CeO2 has a high dielectric quality factor (Q×f), Q value of 10 000 at 6 GHz with a relative permittivity (ε′) of 23, and temperature coefficient of resonant frequency (τf of -53 ppm/°C. The Q value increases to 20 000 at 6 GHz when the CeO2 is doped with 1 mol% CaCO3. Higher levels of CaCO3 doping lowers the Q and ε′ values and simultaneously decreases τf. TiO2 doping decreases τf and slightly increases ε′, but deceases the Q value. The Q value of pure CeO2 increases to 105 000 at a frequency of 5.58 GHz when it is cooled to 30 K, whereas Q ≈ 85 000 at 5.48 GHz for 1-mol%-CaCO3-doped CeO2 at 30 K
Investigation of structural, magnetic and dielectric properties of gallium substituted Z-type Sr3Co2-xGaxFe24O41 hexaferrites for microwave absorbers
Gallium substituted Z-type hexagonal ferrites with chemical composition Sr3Co2-xGaxFe24O41 (x = 0.0,0.4, 0.8, 1.2, 1.6, and 2.0) were successfully synthesised in air at 1200 °C for 5 h using the sol-gel auto-combustion technique, in order to investigate the effect of gallium substitution on structural, magnetic and dielectric properties. X-ray Diffraction (XRD) analysis of all samples reveals the formation of mixed hexaferrite phases, with Z ferrite as the major phase (72–90%).The average crystallite size of heated powders was found to be in the range of 21–40 nm. The saturation magnetisation decreases after gallium substitution, with the lowest values of 64 Am2 kg−1 for composition x = 1.6, which also hasthe highest value of coercivity (28.3 kA m−1). Nevertheless, all were soft ferrites, with Hc between 3.4 and 28.3 kA m−1.The Mr/MS ratio of all samples was found to be less than 0.5, suggesting that all the compositions possess multi-domain microstructures. Mössbauer spectroscopic analysis confirmed that the Fe ions were found in the 3 + high spin state for compositions below x ≤ 0.4, whereas ∼1.5% of the Fe ions were converted into Fe2+ high spin state beyond x ≥ 0.8 compositions, as Ga3+ began to substitute for Fe3+, forming Fe2+ in the cobalt positions. The average hyperfine magnetic field () was found to be decreased with Ga-substitution. Dielectric parameters such as dielectric constant and loss factor were studied as a function of frequency, and their results show normal behaviour for ferrimagnetic materials. In complex measurements at microwave frequencies (8 GHz–12.5 GHz, the X-band), all samples had a real permittivity of around 8–14. For sample x = 2.0, a dielectric resonance peak was observed around 12.15 GHz. All showed a real permeability of around 1.0–1.4 over the frequency of 8 GHz–12.5 GHz range, and ferromagnetic resonance (FMR) was observed in x = 0.0 and 2.0 samples, at around 11 and 12 GHz, respectively. This suggests that the prepared samples can be used as microwave absorbers/EMI shielding at specific microwave frequencies. The co-existence of FMR and dielectric resonance at the same frequency of 12.15 GHz for x = 2.0 could lead to the coupling of these resonances and the development of potential metamaterials
Titanium dioxide engineered for near-dispersionless high terahertz permittivity and ultra-low-loss
Realising engineering ceramics to serve as substrate materials in high-performance terahertz(THz) that are low-cost, have low dielectric loss and near-dispersionless broadband, high permittivity, is exceedingly demanding. Such substrates are deployed in, for example, integrated circuits for synthesizing and converting nonplanar and 3D structures into planar forms. The Rutile form of titanium dioxide (TiO2) has been widely accepted as commercially economical candidate substrate that meets demands for both low-loss and high permittivities at sub-THz bands. However, the relationship between its mechanisms of dielectric response to the microstructure have never been systematically investigated in order to engineer ultra-low dielectric-loss and high value, dispersionless permittivities. Here we show TiO2 THz dielectrics with high permittivity (ca. 102.30) and ultra-low loss (ca. 0.0042). These were prepared by insight gleaned from a broad use of materials characterisation methods to successfully engineer porosities, second phase, crystallography shear-planes and oxygen vacancies during sintering. The dielectric loss achieved here is not only with negligible dispersion over 0.2-0.8 THz, but also has the lowest value measured for known high-permittivity dielectrics. We expect the insight afforded by this study will underpin the development of subwavelength-scale, planar integrated circuits, compact high Q-resonators and broadband, slow-light devices in the THz band
- …
