288 research outputs found

    Spatial confinement of muonium atoms

    Full text link
    We report the achievement of spatial confinement of muonium atoms (the bound state of a positive muon and an electron). Muonium emitted into vacuum from mesoporous silica reflects between two SiO2_2 confining surfaces separated by 1 mm. From the data, one can extract that the reflection probability on the confining surfaces kept at 100 K is about 90% and the reflection process is well described by a cosine law. This technique enables new experiments with this exotic atomic system and is a very important step towards a measurement of the 1S-2S transition frequency using continuous wave laser spectroscopy.Comment: 5 pages, 6 figure

    Direct evidence of superconductivity and determination of the superfluid density in buried ultrathin FeSe grown on SrTiO3_3

    Full text link
    Bulk FeSe is superconducting with a critical temperature TcT_c \cong 8 K and SrTiO3_3 is insulating in nature, yet high-temperature superconductivity has been reported at the interface between a single-layer FeSe and SrTiO3_3. Angle resolved photoemission spectroscopy and scanning tunneling microscopy measurements observe a gap opening at the Fermi surface below \approx 60 K. Elucidating the microscopic properties and understanding the pairing mechanism of single-layer FeSe is of utmost importance as it is a basic building block of iron-based superconductors. Here, we use the low-energy muon spin rotation/relaxation technique (LE-μ\muSR) to detect and quantify the supercarrier density and determine the gap symmetry in FeSe grown on SrTiO3_3 (100). Measurements in applied field show a temperature dependent broadening of the field distribution below \sim 60 K, reflecting the superconducting transition and formation of a vortex state. Zero field measurements rule out the presence of magnetism of static or fluctuating origin. From the inhomogeneous field distribution, we determine an effective sheet supercarrier density ns2D6×1014n_s^{2D} \simeq 6 \times 10^{14} cm2^{-2} at T0T \rightarrow 0 K, which is a factor of 4 larger than expected from ARPES measurements of the excess electron count per Fe of 1 monolayer (ML) FeSe. The temperature dependence of the superfluid density ns(T)n_s(T) can be well described down to \sim 10 K by simple s-wave BCS, indicating a rather clean superconducting phase with a gap of 10.2(1.1) meV. The result is a clear indication of the gradual formation of a two dimensional vortex lattice existing over the entire large FeSe/STO interface and provides unambiguous evidence for robust superconductivity below 60 K in ultrathin FeSe.Comment: 9 pages, 8 figure

    A New High-intensity, Low-momentum Muon Beam for the Generation of Low-energy Muons at PSI

    Get PDF
    At the Paul Scherrer Institute (PSI, Villigen, Switzerland) a new high-intensity muon beam line with momentum p < 40MeV/c is currently being commissioned. The beam line is especially designed to serve the needs of the low-energy, polarized positive muon source (LE-μ+) and LE-μ SR spectrometer at PSI. The beam line replaces the existing μ E4 muon decay channel. A large acceptance is accomplished by installing two solenoidal magnetic lenses close to the muon production target E that is hit by the 590-MeV PSI proton beam. The muons are then transported by standard large aperture quadrupoles and bending magnets to the experiment. Several slit systems and an electrostatic separator allow the control of beam shape, momentum spread, and to reduce the background due to beam positrons or electrons. Particle intensities of up to 3.5 × 108 μ+/s and 107 μ−/s are expected at 28MeV/c beam momentum and 1.8mA proton beam current. This will translate into a LE-μ+ rate of 7,000/s being available at the LE-μ SR spectrometer, thus achieving μ+ fluxes, that are comparable to standard μ SR facilitie

    Intense beam of metastable Muonium

    Full text link
    Precision spectroscopy of the Muonium Lamb shift and fine structure requires a robust source of 2S Muonium. To date, the beam-foil technique is the only demonstrated method for creating such a beam in vacuum. Previous experiments using this technique were statistics limited, and new measurements would benefit tremendously from the efficient 2S production at a low energy muon (<20<20 keV) facility. Such a source of abundant low energy μ+\mathrm{\mu^+} has only become available in recent years, e.g. at the Low-Energy Muon beamline at the Paul Scherrer Institute. Using this source, we report on the successful creation of an intense, directed beam of metastable Muonium. We find that even though the theoretical Muonium fraction is maximal in the low energy range of 252-5 keV, scattering by the foil and transport characteristics of the beamline favor slightly higher μ+\mathrm{\mu^+} energies of 7107-10 keV. We estimate that an event detection rate of a few events per second for a future Lamb shift measurement is feasible, enabling an increase in precision by two orders of magnitude over previous determinations
    corecore