1,324 research outputs found

    Exact Markovian kinetic equation for a quantum Brownian oscillator

    Full text link
    We derive an exact Markovian kinetic equation for an oscillator linearly coupled to a heat bath, describing quantum Brownian motion. Our work is based on the subdynamics formulation developed by Prigogine and collaborators. The space of distribution functions is decomposed into independent subspaces that remain invariant under Liouville dynamics. For integrable systems in Poincar\'e's sense the invariant subspaces follow the dynamics of uncoupled, renormalized particles. In contrast for non-integrable systems, the invariant subspaces follow a dynamics with broken-time symmetry, involving generalized functions. This result indicates that irreversibility and stochasticity are exact properties of dynamics in generalized function spaces. We comment on the relation between our Markovian kinetic equation and the Hu-Paz-Zhang equation.Comment: A few typos in the published version are correcte

    Phenomenological approach to the critical dynamics of the QCD phase transition revisited

    Full text link
    The phenomenological dynamics of the QCD critical phenomena is revisited. Recently, Son and Stephanov claimed that the dynamical universality class of the QCD phase transition belongs to model H. In their discussion, they employed a time-dependent Ginzburg-Landau equation for the net baryon number density, which is a conserved quantity. We derive the Langevin equation for the net baryon number density, i.e., the Cahn-Hilliard equation. Furthermore, they discussed the mode coupling induced through the {\it irreversible} current. Here, we show the {\it reversible} coupling can play a dominant role for describing the QCD critical dynamics and that the dynamical universality class does not necessarily belong to model H.Comment: 13 pages, the Curie principle is discussed in S.2, to appear in J.Phys.

    Star-unitary transformations. From dynamics to irreversibility and stochastic behavior

    Full text link
    We consider a simple model of a classical harmonic oscillator coupled to a field. In standard approaches Langevin-type equations for {\it bare} particles are derived from Hamiltonian dynamics. These equations contain memory terms and are time-reversal invariant. In contrast the phenomenological Langevin equations have no memory terms (they are Markovian equations) and give a time evolution split in two branches (semigroups), each of which breaks time symmetry. A standard approach to bridge dynamics with phenomenology is to consider the Markovian approximation of the former. In this paper we present a formulation in terms of {\it dressed} particles, which gives exact Markovian equations. We formulate dressed particles for Poincar\'e nonintegrable systems, through an invertible transformation operator \Lam introduced by Prigogine and collaborators. \Lam is obtained by an extension of the canonical (unitary) transformation operator UU that eliminates interactions for integrable systems. Our extension is based on the removal of divergences due to Poincar\'e resonances, which breaks time-symmetry. The unitarity of UU is extended to ``star-unitarity'' for \Lam. We show that \Lam-transformed variables have the same time evolution as stochastic variables obeying Langevin equations, and that \Lam-transformed distribution functions satisfy exact Fokker-Planck equations. The effects of Gaussian white noise are obtained by the non-distributive property of \Lam with respect to products of dynamical variables. Therefore our method leads to a direct link between dynamics of Poincar\'e nonintegrable systems, probability and stochasticity.Comment: 24 pages, no figures. Made more connections with other work. Clarified ideas on irreversibilit

    Irreversible thermodynamics of open chemical networks I: Emergent cycles and broken conservation laws

    Get PDF
    In this and a companion paper we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks "in a box", whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated to nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. These central results are resumed in the relation a+b=sYa + b = s^Y between the number of fundamental affinities aa, that of broken conservation laws bb and the number of chemostats sYs^Y. We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction and of thermodynamic constraints for network reconstruction.Comment: 18 page

    Causality, delocalization and positivity of energy

    Full text link
    In a series of interesting papers G. C. Hegerfeldt has shown that quantum systems with positive energy initially localized in a finite region, immediately develop infinite tails. In our paper Hegerfeldt's theorem is analysed using quantum and classical wave packets. We show that Hegerfeldt's conclusion remains valid in classical physics. No violation of Einstein's causality is ever involved. Using only positive frequencies, complex wave packets are constructed which at t=0t = 0 are real and finitely localized and which, furthemore, are superpositions of two nonlocal wave packets. The nonlocality is initially cancelled by destructive interference. However this cancellation becomes incomplete at arbitrary times immediately afterwards. In agreement with relativity the two nonlocal wave packets move with the velocity of light, in opposite directions.Comment: 14 pages, 5 figure

    Quantum properties of a cyclic structure based on tripolar fields

    Full text link
    The properties of cyclic structures (toroidal oscillators) based on classical tripolar (colour) fields are discussed, in particular, of a cyclic structure formed of three colour-singlets spinning around a ring-closed axis. It is shown that the helicity and handedness of this structure can be related to the quantum properties of the electron. The symmetry of this structure corresponds to the complete cycle of 2/3π{2/3}\pi-rotations of its constituents, which leads to the exact overlapping of the paths of its three complementary coloured constituents, making the system dynamically colourless. The gyromagnetic ratio of this system is estimated to be g≈2\approx 2, which agrees with the Land\'e g-factor for the electron.Comment: 11 pages, 4 figures, journal versio

    Non-trivial stably free modules over crossed products

    Full text link
    We consider the class of crossed products of noetherian domains with universal enveloping algebras of Lie algebras. For algebras from this class we give a sufficient condition for the existence of projective non-free modules. This class includes Weyl algebras and universal envelopings of Lie algebras, for which this question, known as noncommutative Serre's problem, was extensively studied before. It turns out that the method of lifting of non-trivial stably free modules from simple Ore extensions can be applied to crossed products after an appropriate choice of filtration. The motivating examples of crossed products are provided by the class of RIT algebras, originating in non-equilibrium physics.Comment: 13 page

    Numerical Investigation of a Mesoscopic Vehicular Traffic Flow Model Based on a Stochastic Acceleration Process

    Full text link
    In this paper a spatial homogeneous vehicular traffic flow model based on a stochastic master equation of Boltzmann type in the acceleration variable is solved numerically for a special driver interaction model. The solution is done by a modified direct simulation Monte Carlo method (DSMC) well known in non equilibrium gas kinetic. The velocity and acceleration distribution functions in stochastic equilibrium, mean velocity, traffic density, ACN, velocity scattering and correlations between some of these variables and their car density dependences are discussed.Comment: 23 pages, 10 figure

    Slow, Steady-State Transport with "Loading" and Bulk Reactions: the Mixed Ionic Conductor La2_2CuO4+ÎŽ_{4+\delta}

    Full text link
    We consider slow, steady transport for the normal state of the superconductor La2_2CuO4+ÎŽ_{4+\delta} in a one-dimensional geometry, with surface fluxes sufficiently general to permit oxygen to be driven into the sample (``loaded'') either by electrochemical means or by high oxygen partial pressure. We include the bulk reaction O→\toO2−+2h^{2-}+2h, where neutral atoms (aa) go into ions (ii) and holes (hh). For slow, steady transport, the transport equations simplify because the bulk reaction rate density rr and the bulk loading rates ∂tn\partial_t n then are uniform in space and time. All three fluxes jj must be specified at each surface, which for a uniform current density JJ corresponds to five independent fluxes. These fluxes generate two types of static modes at each surface and a bulk response with a voltage profile that varies quadratically in space, characterized by JJ and the total oxygen flux jOj_O (neutral plus ion) at each surface. One type of surface mode is associated with electrical screening; the other type is associated both with diffusion and drift, and with chemical reaction (the {\it diffusion-reaction mode}). The diffusion-reaction mode is accompanied by changes in the chemical potentials ÎŒ\mu, and by reactions and fluxes, but it neither carries current (J=0) nor loads the system chemically (jO=0j_O=0). Generation of the diffusion-reaction mode may explain the phenomenon of ``turbulence in the voltage'' often observed near the electrodes of other mixed ionic electronic conductors (MIECs).Comment: 11 pages, 1 figur

    The thermodynamic dual structure of linear-dissipative driven systems

    Full text link
    The spontaneous emergence of dynamical order, such as persistent currents, is sometimes argued to require principles beyond the entropy maximization of the second law of thermodynamics. I show that, for linear dissipation in the Onsager regime, current formation can be driven by exactly the Jaynesian principle of entropy maximization, suitably formulated for extended systems and nonequilibrium boundary conditions. The Legendre dual structure of equilibrium thermodynamics is also preserved, though it requires the admission of current-valued state variables, and their correct incorporation in the entropy
    • 

    corecore