189 research outputs found

    Metal-Doped Plastic Scintillator for Neutron Detection

    Get PDF
    The Super Cryogenic Dark Matter Search (SuperCDMS) is an experiment that looks for dark matter, specifically weakly-interacting massive particles (WIMPs) via nuclear recoils with germanium and silicon atoms. Currently, the SuperCDMS SNOLAB dark matter detector, the successor to SuperCDMS Soudan, is being developed for placement at the SNOLAB research facility in Canada. As the sensitivity of this detector is increased, the suppression of neutron backgrounds through the traditional methods of using highly radiopure materials and passive shielding becomes much more difficult. Single-scatter neutron events can produce nuclear recoils that are indistinguishable from WIMP interactions. These events can be detected by replacing some of the passive neutron shielding with an active neutron veto composed of a metal-loaded plastic scintillator.This research was supported by the Undergraduate Research Opportunities Program (UROP)

    Combinations of Host- and Virus-Targeting Antiviral Drugs Confer Synergistic Suppression of SARS-CoV-2

    Get PDF
    Three directly acting antivirals (DAAs) demonstrated substantial reduction in COVID-19 hospitalizations and deaths in clinical trials. However, these agents did not completely prevent severe illness and are associated with cases of rebound illness and viral shedding. Combination regimens can enhance antiviral potency, reduce the emergence of drug-resistant variants, and lower the dose of each component in the combination. Concurrently targeting virus entry and virus replication offers opportunities to discover synergistic drug combinations. While combination antiviral drug treatments are standard for chronic RNA virus infections, no antiviral combination therapy has been approved for SARS-CoV-2. Here, we demonstrate that combining host-targeting antivirals (HTAs) that target TMPRSS2 and hence SARS-CoV-2 entry, with the DAA molnupiravir, which targets SARS-CoV-2 replication, synergistically suppresses SARS-CoV-2 infection in Calu-3 lung epithelial cells. Strong synergy was observed when molnupiravir, an oral drug, was combined with three TMPRSS2 (HTA) oral or inhaled inhibitors: camostat, avoralstat, or nafamostat. The combination of camostat plus molnupiravir was also effective against the beta and delta variants of concern. The pyrimidine biosynthesis inhibitor brequinar combined with molnupiravir also conferred robust synergistic inhibition. These HTA+DAA combinations had similar potency to the synergistic all-DAA combination of molnupiravir plus nirmatrelvir, the protease inhibitor found in paxlovid. Pharmacodynamic modeling allowed estimates of antiviral potency at all possible concentrations of each agent within plausible therapeutic ranges, suggesting possible in vivo efficacy. The triple combination of camostat, brequinar, and molnupiravir further increased antiviral potency. These findings support the development of HTA+DAA combinations for pandemic response and preparedness. IMPORTANCE Imagine a future viral pandemic where if you test positive for the new virus, you can quickly take some medicines at home for a few days so that you do not get too sick. To date, only single drugs have been approved for outpatient use against SARS-CoV-2, and we are learning that these have some limitations and may succumb to drug resistance. Here, we show that combinations of two oral drugs are better than the single ones in blocking SARS-CoV-2, and we use mathematical modeling to show that these drug combinations are likely to work in people. We also show that a combination of three oral drugs works even better at eradicating the virus. Our findings therefore bode well for the development of oral drug cocktails for at home use at the first sign of an infection by a coronavirus or other emerging viral pathogens.Peer reviewe

    Elucidating the Mechanisms of Influenza Virus Recognition by Ncr1

    Get PDF
    Natural killer (NK) cells are innate cytotoxic lymphocytes that specialize in the defense against viral infection and oncogenic transformation. Their action is tightly regulated by signals derived from inhibitory and activating receptors; the later include proteins such as the Natural Cytotoxicity Receptors (NCRs: NKp46, NKp44 and NKp30). Among the NCRs, NKp46 is the only receptor that has a mouse orthologue named Ncr1. NKp46/Ncr1 is also a unique marker expressed on NK and on Lymphoid tissue inducer (LTI) cells and it was implicated in the control of various viral infections, cancer and diabetes. We have previously shown that human NKp46 recognizes viral hemagglutinin (HA) in a sialic acid-dependent manner and that the O-glycosylation is essential for the NKp46 binding to viral HA. Here we studied the molecular interactions between Ncr1 and influenza viruses. We show that Ncr1 recognizes influenza virus in a sialic acid dependent manner and that N-glycosylation is important for this binding. Surprisingly we demonstrate that none of the predicted N-glycosilated residues of Ncr1 are essential for its binding to influenza virus and we thus conclude that other, yet unidentified N-glycosilated residues are responsible for its recognition. We have demonstrated that N glycosylation play little role in the recognition of mouse tumor cell lines and also showed the in-vivo importance of Ncr1 in the control of influenza virus infection by infecting C57BL/6 and BALB/c mice knockout for Ncr1 with influenza

    Regulated Expression of ADAMTS-12 in Human Trophoblastic Cells: A Role for ADAMTS-12 in Epithelial Cell Invasion?

    Get PDF
    Metastatic carcinoma cells exploit the same molecular machinery that allows human placental cytotrophoblasts to develop an invasive phenotype. As altered expression levels of ADAMTS (A Disintegrin And Metalloproteinase with ThromboSpondin repeats) subtypes have been associated with cancer progression, we have examined the function and regulation of members of this gene family in epithelial cell invasion using cultures of highly invasive extravillous cytotrophoblasts and the poorly invasive JEG-3 cytotrophoblast cell line as model systems. Of the multiple ADAMTS subtypes identified in first trimester human placenta and these two trophoblastic cell types, only ADAMTS-12 was preferentially expressed by extravillous cytotrophoblasts. Transforming growth factor-β1 and interleukin-1β, two cytokines that promote and restrain cytotrophoblast invasion in vitro, were also found to differentially regulate trophoblastic ADAMTS-12 mRNA levels. Loss- or gain-of-function studies confirmed that ADAMTS-12, independent of its proteolytic activity, plays a specific, non-redundant role in trophoblast invasion. Furthermore, we demonstrated that ADAMTS-12 regulated cell-extracellular matrix adhesion and invasion through a mechanism involving the αvβ3 integrin heterodimer. This study identifies a novel biological role for ADAMTS-12, and highlights the importance and complexity of its non-proteolytic domain(s) pertaining to its function

    Benchmarking of Mutation Diagnostics in Clinical Lung Cancer Specimens

    Get PDF
    Treatment of EGFR-mutant non-small cell lung cancer patients with the tyrosine kinase inhibitors erlotinib or gefitinib results in high response rates and prolonged progression-free survival. Despite the development of sensitive mutation detection approaches, a thorough validation of these in a clinical setting has so far been lacking. We performed, in a clinical setting, a systematic validation of dideoxy ‘Sanger’ sequencing and pyrosequencing against massively parallel sequencing as one of the most sensitive mutation detection technologies available. Mutational annotation of clinical lung tumor samples revealed that of all patients with a confirmed response to EGFR inhibition, only massively parallel sequencing detected all relevant mutations. By contrast, dideoxy sequencing missed four responders and pyrosequencing missed two responders, indicating a dramatic lack of sensitivity of dideoxy sequencing, which is widely applied for this purpose. Furthermore, precise quantification of mutant alleles revealed a low correlation (r2 = 0.27) of histopathological estimates of tumor content and frequency of mutant alleles, thereby questioning the use of histopathology for stratification of specimens for individual analytical procedures. Our results suggest that enhanced analytical sensitivity is critically required to correctly identify patients responding to EGFR inhibition. More broadly, our results emphasize the need for thorough evaluation of all mutation detection approaches against massively parallel sequencing as a prerequisite for any clinical implementation

    Dysregulated Cytokine Expression by CD4+ T cells from Post-Septic Mice Modulates both Th1 and Th2-Mediated Granulomatous Lung Inflammation

    Get PDF
    Previous epidemiological studies in humans and experimental studies in animals indicate that survivors of severe sepsis exhibit deficiencies in the activation and effector function of immune cells. In particular, CD4+ T lymphocytes can exhibit reduced proliferative capacity and improper cytokine responses following sepsis. To further investigate the cell-intrinsic defects of CD4+ T cells following sepsis, splenic CD4+ T cells from sham surgery and post-septic mice were transferred into lymphopenic mice. These recipient mice were then subjected to both TH1-(purified protein derivative) and TH2-(Schistosoma mansoni egg antigen) driven models of granulomatous lung inflammation. Post-septic CD4+ T cells mediated smaller TH1 and larger TH2 lung granulomas as compared to mice receiving CD4+ T cells from sham surgery donors. However, cytokine production by lymph node cells in antigen restimulation assays indicated increased pan-specific cytokine expression by post-septic CD4+ T cell recipient mice in both TH1 and TH2 granuloma models. These include increased production of TH2 cytokines in TH1 inflammation, and increased production of TH1 cytokines in TH2 inflammation. These results suggest that cell-intrinsic defects in CD4+ T cell effector function can have deleterious effects on inflammatory processes post-sepsis, due to a defect in the proper regulation of TH-specific cytokine expression

    Pregnant Behind Bars: Meeting the Nutrition Needs of Incarcerated Pregnant Women

    Get PDF
    The number of women involved in the criminal justice system has increased dramatically over the past 20 years. Due to their marginalized background, incarcerated women have a complex set of health-related needs. This is especially true of those who are pregnant, a particularly vulnerable, high-risk group. Although guidelines have been developed that recommend pregnancy screening, provision of dietary supplements, regular nutritious meals, and nutritional counseling for incarcerated pregnant women, jail policies and health care protocols often fail to heed these recommendations. In this chapter, we discuss the nutritional needs of pregnant incarcerated women as well as breastfeeding in the context of the criminal justice system and consider some of the challenges in developing programming and policies to address these health-related needs. We also present findings from the William & Mary Healthy Beginnings Project, a nutrition intervention program developed for pregnant incarcerated women in Southeastern Virginia. Assessment of this program suggests that through the development of protocols and polices that consider the health-related needs of pregnant women, correctional facilities could play a pivotal role in helping incarcerated women develop healthier habits to better care for themselves and their newborns.https://scholarworks.wm.edu/asbookchapters/1106/thumbnail.jp
    • …
    corecore