858 research outputs found
Signal Detection for QPSK Based Cognitive Radio Systems using Support Vector Machines
Cognitive radio based network enables opportunistic dynamic spectrum access by sensing, adopting and utilizing the unused portion of licensed spectrum bands. Cognitive radio is intelligent enough to adapt the communication parameters of the unused licensed spectrum. Spectrum sensing is one of the most important tasks of the cognitive radio cycle. In this paper, the auto-correlation function kernel based Support Vector Machine (SVM) classifier along with Welch's Periodogram detector is successfully implemented for the detection of four QPSK (Quadrature Phase Shift Keying) based signals propagating through an AWGN (Additive White Gaussian Noise) channel. It is shown that the combination of statistical signal processing and machine learning concepts improve the spectrum sensing process and spectrum sensing is possible even at low Signal to Noise Ratio (SNR) values up to -50 dB
A rural agricultural-sustainable energy community model and its application to Felton Valley, Australia
Energy and food security require a delicate balance which should not threaten or undermine community prosperity. Where it is proposed to derive energy from conventional fossil fuel resources (such as coal, shale oil, natural gas, coal seam gas) located in established rural areas, and particularly where these areas are used for productive agricultural purposes, there are often both intense community concern as well as broader questions regarding the relative social, economic and environmental costs and benefits of different land uses and, increasingly, different energy sources. The advent of mainstream renewable energy technologies means that alternative energy options may provide a viable alternative, allowing energy demand to be met without compromising existing land uses. We demonstrate how such a Sustainable Energy Rural Model can be designed to achieve a balance between the competing social goals of energy supply, agricultural production, environmental integrity and social well-being, and apply it to the Felton Valley, a highly productive and resilient farming community in eastern Australia.
Research into available wind and solar resources found that Felton Valley has a number of attributes that indicate its suitability for the development of an integrated renewable energy precinct which would complement, rather than displace, existing agricultural enterprises. Modelling results suggest a potential combined annual renewable energy output from integrated wind and solar resources of 1,287 GWh/yr from peak installed capacity of 713 MW, sufficient to supply the electrical energy needs of about 160,000 homes, in combination with total biomass food production of 31,000 tonnes per annum or 146 GWh/yr of human food energy. The portfolio of renewable energy options will not only provide energy source diversity but also ensures long-term food security and regional stability.
The Felton Valley model provides an example of community-led energy transformation and has potential as a pilot project for the development of smart distributed grids that would negate the need for further expansion of coal mining and coal fired power stations
Structured hydrological analysis for targeting fallow evaporation to improve water productivity at the irrigation system level
International audienceThis paper provides results of an application of a holistic systematic approach of water accounting using remote sensing and GIS coupled with ground water modeling to evaluate water saving options by tracking non-beneficial evaporation in the Liuyuankou Irrigation System (LIS) of China. Groundwater rise is a major issue in the LIS, where groundwater levels have risen alarmingly close to the ground surface (within 1 m) near the Yellow River. The lumped water balance analysis showed high fallow evaporation losses and which need to be reduced for improving water productivity. The seasonal actual evapotranspiration (ETs) was estimated by applying the SEBAL algorithm for eighteen NOAA AVHRR-12 images over the year of 1990?1991. This analysis was aided by the unsupervised land use classification applied to two Landsat 5 TM images of the study area. SEBAL results confirmed that a significant amount (116.7 MCM) of water can be saved by reducing ETs from fallow land which will result in improved water productivity at the irrigation system. The water accounting indicator (for the analysis period) shows that the process fraction per unit of depleted water (PFdepleted) is 0.52 for LIS, meaning that 52% of the depleted water is consumed by agricultural crops and 48% is lost through non-process depletion. Finally, the groundwater modeling was applied to simulate three land use and water management interventions to assess their effectiveness for both water savings and impact on the groundwater in LIS. MODFLOW's Zone Budget code calculates the groundwater budget of user-specified subregions, the exchange of flows between subregions and also calculates a volumetric water budget for the entire model at the end of each time step. The simulation results showed that fallow evaporation could be reduced between 14.2% (25.51 MCM) and 45.3% (81.36 MCM) by interventions such as canal lining and ground water pumping. The reduction in non-beneficial ETs volumes would mean that more water would be available for other uses and it would allow the introduction of more surface water supplies in the area through improved water management strategies. This will ultimately lead to improved water productivity of the LIS system
Honey bee immunity and physiology are enhanced by consuming high-fat diets
This study aimed to evaluate the nutritional behavior and some immunological criteria (encapsulation index and phenoloxidase – PO activity, the key enzyme for melanization) as well as to study the effect of protein to fat (P : F) diets on hypopharyngeal gland (HPG) protein content. Bees were restricted to consuming specific P : F diets varying in fat ratio under laboratory conditions. These diets included 25 : 1, 10 : 1, 5 : 1 (low-fat diet, LFD); 1 : 1 (equal-fat diet); 1 : 5, 1 : 10 (high-fat diet, HFD), and 1 : 0 (zero-fat diet) as a control. Bees preferred low-fat diets over high-fat diets, where it was 11.27 ± 0.68 μl · day–1 bee in 10 : 1 P : F, while it was 4.99 ± 0.67 μl · day–1 bee in 1 : 10 P : F. However, sucrose consumption was higher in high-fat diets where it was 25.83 ± 1.69 μl · day –1 bee in 10 : 1 P: F, while it was 30.66 ± 0.9 μl · day–1 bee in 1 : 10 P : F. The encapsulation index and phenoloxidase activity of bees were positively linked with the fat level they consumed during all 10 days. The maximum percentage of encapsulation index was 74.6 ± 7.2% in bees fed a high-fat diet, whereas the minimum percentage was 16.5 ± 3.6% in bees which consumed a lowfat diet. Similarly, phenoloxidase activity increased in the haemolymph with increasing fat consumed by bees (0.001 ± 0.0001 and 0.005 ± 0.0003 mM · min –1 · mg –1 at 25 : 1 and 1 : 10 P : F, respectively). The protein content of hypopharyngeal glands in bees which consumed HFD was double that of LFD. Overall results suggest a connection between a fat diet and bee health, indicating that colony losses in some cases can be reduced by providing a certain level of fat supplemental feeding along with sucrose and protein nutrition
Screening of maize germplasm for Turcicum leaf blight resistance
: A study was conducted during Kharif 2012 and 2013 at Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar Campus Srinagar with the objective of screening sixty maize genotypes against Turcicum leaf blight caused by Exserohilum turcicum (Pass.) Leonard and Suggs. Field experiment was laid out in a randomized block design with three replications. In order to ensure establishment of infection, artificial inoculation of E. turcicum on test genotypes was made twice at 30 and 40 days after sowing with two different methods of inoculation (spraying on foliage of maize with spore suspension of pathogen @ 5x104 spores/ml at 30 DAS and by whorl drop inoculation of pathogen multiplies on sorghum grains at 40 DAS). Disease severity on test entries was scored at silk drying stage and studies revealed that two inbred lines, viz., NAI-112 and NAI-147, and one hybrid, viz., HQPM-1 were found resistant with pooled disease intensity of 4.12 per cent, 4.04 per cent and 4.38 per cent, respectively. Four inbred lines, viz., KDM 381 A, KDM 918 A, NAI-152 and NAI-167 were found susceptible with pooled disease intensity of 52.82 per cent, 51.02 per cent, 58.58 per cent and 61.33 per cent, respectively. The remaining genotypes were moderately resistant to moderately susceptible
PROTECTION ACTIVITY OF T CELL LYMPHOKINES AGAINST INFECTIOUS BURSAL DISEASE IN LAYER PULLETS
The present study was aimed to administering hyperimmunized avian salmonella-immune lymphokines (S-ILK) to 200 one-day-old layer pullets to improve the immunological response against Gumboro (IBDV) divided into four groups. On the first day, the following was applied to all groups: G1: intraperitoneal injection of 0.50 mL S-ILK followed by a 30-minute challenge with 0.1 mL IBDV (ELD50 103.2); G2: intraperitoneal injection of 0.5 mL of S-NILK followed by a 30-minute challenge by 0.1 mL IBDV. G3: challenged with 0.1 mL of IBDV only, G4: uninfected, unchallenged group consider as a negative control. The results of the findings indicated the greatest a statistically significant rise (p≤ 0.05) in IgG and IFN-γ titres in that group and the viral load test revealed that at 7 and 14 days after infection, The largest number of IBDV RNA copies were found in G2 and G3. in the bursa of Fabricius. The first group had the lowest mortality rate compared to the other groups. Early S-ILK administration improves maternal resistance to IBDV infection and inhibits viral replication in the fabricius bursa following IBDV challenge. Thus, we may reduce the amount of time, effort, and money spent on immunization procedures that do not completely protect against diseases
EVALUTION OF THE BEST VACCINAL ROUTES AGAINST NEWCASTLE IN THE PRODUCTION STAGE OF LAYING HENS
Newcastle disease (ND) is a paramyxovirus-based infectious, highly contagious, and pathogenic avian viral disease. Despite the widespread use of ND vaccinations, ND remains a danger to poultry breeders worldwide. The specific goal of this study was to identify the best vaccination route against ND in the layer hens at production stage following oily vaccine. One hundred chickens at 30 weeks of age were collected from layer flocks (ISSA brown) and randomly divided into four groups. The groups received the following vaccinations: G1: Chicks were vaccinated two doses against ND by (La Sota strain) through drinking water at (30 and 40) weeks. G2: Chicks were vaccinated two doses against ND by (La Sota strain) through cross spray at (30 and 40) weeks. G3: Chicks were vaccinated two doses against ND by (La Sota strain) through intraocular at (30 and 40) weeks. G4: Chicks were not vaccinated and consider as control group. All groups challenge with virulent Newcastle virus isolates in a dose ELD50 105 at 50 weeks. To measure the (IgG, IgA, and IFN-γ) against ND, blood samples were taken at 35, 45, and 55 weeks of age. According to the results of this experiment, the third group, followed by the second group, produced the highest mean (IgG, IgA, and IFN-γ) titres among the vaccinated groups, while the first group produced the lowest titres when compared to the control negative (fourth) group, which recorded the lowest immune response and highly decrease in eggs production. The results were showed that intraocular vaccination with a live vaccine provides layer hens with a higher level of homogenous protection against vvNDV than spraying or drinking water vaccination
The Benefit of Cross-Modal Reorganization on Speech Perception in Pediatric Cochlear Implant Recipients Revealed Using Functional Near-Infrared Spectroscopy
Cochlear implants (CIs) are the most successful treatment for severe-to-profound deafness in children. However, speech outcomes with a CI often lag behind those of normally-hearing children. Some authors have attributed these deficits to the takeover of the auditory temporal cortex by vision following deafness, which has prompted some clinicians to discourage the rehabilitation of pediatric CI recipients using visual speech. We studied this cross-modal activity in the temporal cortex, along with responses to auditory speech and non-speech stimuli, in experienced CI users and normally-hearing controls of school-age, using functional near-infrared spectroscopy. Strikingly, CI users displayed significantly greater cortical responses to visual speech, compared with controls. Importantly, in the same regions, the processing of auditory speech, compared with non-speech stimuli, did not significantly differ between the groups. This suggests that visual and auditory speech are processed synergistically in the temporal cortex of children with CIs, and they should be encouraged, rather than discouraged, to use visual speech
Economic impact of frost in the Australian wheatbelt
[Introduction]: Extreme temperatures can cause severe reductions in wheat yield, including in Australia where temperatures are highly variable within and across growing seasons. A single post head-emergence frost (PHEF) event has the potential to devastate individual wheat crop by damaging stems and killing whole head.
Management of crop phenology to avoid PHEF is very important in many parts of the world where frost risk is high. Breeding for improved reproductive frost tolerance could allow greater yield and economic benefits to be achieved, by (i) reducing direct frost damage and (ii) allowing earlier sowing to reduce risks of late-season drought and/or heat stresses (Fig. 1). This study aims to provides insights into the frost impact and economic benefits of different improved frost tolerance levels across the Australian wheatbelt
- …