823 research outputs found
Are the black hole masses in Narrow Line Seyfert 1 galaxies actually small?
Narrow Line Seyfert 1 galaxies (NLS1s) are generally considered peculiar
objects among the broad class of Type 1 active galactic nuclei, due to the
relatively small width of the broad lines, strong X-ray variability, soft X-ray
continua, weak [OIII], and strong FeII line intensities. The mass M_BH of the
central massive black hole (MBH) is claimed to be lighter than expected from
known MBH-host galaxy scaling relations, while the accretion rate onto the MBH
larger than the average value appropriate to Seyfert 1 galaxies. In this
Letter, we show that NLS1 peculiar M_BH and L/L_Edd turn out to be fairly
standard, provided that the broad line region is allowed to have a disc-like,
rather than isotropic, geometry. Assuming that NLS1s are rather ``normal''
Seyfert 1 objects seen along the disc axis, we could estimate the typical
inclination angles from the fraction of Seyfert 1 classified as NLS1s, and
compute the geometrical factor relating the observed FWHM of broad lines to the
virial mass of the MBH. We show that the geometrical factor can fully account
for the "black hole mass deficit" observed in NLS1s, and that L/L_Edd is (on
average) comparable to the value of the more common broad line Seyfert 1
galaxies.Comment: 5 pages, 3 figures. Accepted for publication in MNRAS Letters. Wrong
version was uploaded! Check for the correct one in the replacemen
The transcriptional response of Caenorhabditis elegans to ivermectin exposure identifies novel genes involved in the response to reduced food intake
We have examined the transcriptional response of Caenorhabditis elegans following exposure to the anthelmintic drug ivermectin (IVM) using whole genome microarrays and real-time QPCR. Our original aim was to identify candidate molecules involved in IVM metabolism and/or excretion. For this reason the IVM tolerant strain, DA1316, was used to minimise transcriptomic changes related to the phenotype of drug exposure. However, unlike equivalent work with benzimidazole drugs, very few of the induced genes were members of xenobiotic metabolising enzyme families. Instead, the transcriptional response was dominated by genes associated with fat mobilization and fatty acid metabolism including catalase, esterase, and fatty acid CoA synthetase genes. This is consistent with the reduction in pharyngeal pumping, and consequential reduction in food intake, upon exposure of DA1316 worms to IVM. Genes with the highest fold change in response to IVM exposure, cyp-37B1, mtl-1 and scl-2, were comparably up-regulated in response to short–term food withdrawal (4 hr) independent of IVM exposure, and GFP reporter constructs confirm their expression in tissues associated with fat storage (intestine and hypodermis). These experiments have serendipitously identified novel genes involved in an early response of C. elegans to reduced food intake and may provide insight into similar processes in higher organisms
Tracing the cosmic growth of supermassive black holes to z~3 with Herschel
We study a sample of Herschel selected galaxies within the Great Observatories Origins Deep Survey-South and the Cosmic Evolution Survey fields in the framework of the Photodetector Array Camera and Spectrometer (PACS) Evolutionary Probe project. Starting from the rich multiwavelength photometric data sets available in both fields, we perform a broad-band spectral energy distribution decomposition to disentangle the possible active galactic nucleus (AGN) contribution from that related to the host galaxy. We find that 37 per cent of the Herschel-selected sample shows signatures of nuclear activity at the 99 per cent confidence level. The probability of revealing AGN activity increases for bright (L 1−1000 > 10 11 L ? ) star-forming galaxies at z > 0.3, becoming about 80 per cent for the brightest (L 1−1000 > 10 12 L ? )
Infrared (IR) galaxies at z≥1. Finally, we reconstruct the AGN bolometric luminosity function and the supermassive black hole growth rate across cosmic time up to z ∼ 3 from a far-IR perspective. This work shows general agreement with most of the panchromatic estimates from the literature, with the global black hole growth peaking at z ∼ 2 and reproducing the observed local black hole mass density with consistent values of the radiative efficiency Erad (∼0.07)
Radio selection of the most distant galaxy clusters
We show that the most distant X-ray detected cluster known to date, ClJ1001 at z=2.506, hosts a strong overdensity of radio sources. Six of them are individually detected (within 10") in deep 0.75" resolution VLA 3GHz imaging, with S(3GHz)>8uJy. Of the six, AGN likely affects the radio emission in two galaxies while star formation is the dominant source powering the remaining four. We searched for cluster candidates over the full COSMOS 2-square degree field using radio-detected 3GHz sources and looking for peaks in Sigma5 density maps. ClJ1001 is the strongest overdensity by far with >10sigma, with a simple z_phot>1.5 preselection. A cruder photometric rejection of z2.5. Samples of hundreds such high-redshift clusters could potentially constrain cosmological parameters and test cluster and galaxy formation models
GOODS-Herschel: star formation, dust attenuation, and the FIR-radio correlation on the main sequence of star-forming galaxies up to z=4
We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z sime 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate–M* correlation is consistent with being constant sime0.8 up to z sime 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR–radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z sime 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5–4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z sime 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≥ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts
Untargeted metabolomic analysis of Rat neuroblastoma cells as a model system to study the biochemical effects of the acute administration of methamphetamine
Methamphetamine is an illicit psychostimulant drug that is linked to a number of diseases of the nervous system. The downstream biochemical effects of its primary mechanisms are not well understood, and the objective of this study was to investigate whether untargeted metabolomic analysis of an in vitro model could generate data relevant to what is already known about this drug. Rat B50 neuroblastoma cells were treated with 1 mM methamphetamine for 48 h, and both intracellular and extracellular metabolites were profiled using gas chromatography–mass spectrometry. Principal component analysis of the data identified 35 metabolites that contributed most to the difference in metabolite profiles. Of these metabolites, the most notable changes were in amino acids, with significant increases observed in glutamate, aspartate and methionine, and decreases in phenylalanine and serine. The data demonstrated that glutamate release and, subsequently, excitotoxicity and oxidative stress were important in the response of the neuronal cell to methamphetamine. Following this, the cells appeared to engage amino acid-based mechanisms to reduce glutamate levels. The potential of untargeted metabolomic analysis has been highlighted, as it has generated biochemically relevant data and identified pathways significantly affected by methamphetamine. This combination of technologies has clear uses as a model for the study of neuronal toxicology
Evidence for feedback in action from the molecular gas content in the z~1.6 outflowing QSO XID2028
Gas outflows are believed to play a pivotal role in shaping galaxies, as they regulate both star formation and black hole growth. Despite their ubiquitous presence, the origin and the acceleration mechanism of such powerful and extended winds is not yet understood. Direct observations of the cold gas component in objects with detected outflows at other wavelengths are needed to assess the impact of the outflow on the host galaxy interstellar medium (ISM). We observed with the Plateau de Bure Interferometer an obscured quasar at z~1.5, XID2028, for which the presence of an ionised outflow has been unambiguously signalled by NIR spectroscopy. The detection of CO(3-2) emission in this source allows us to infer the molecular gas content and compare it to the ISM mass derived from the dust emission. We then analyze the results in the context of recent insights on scaling relations, which describe the gas content of the overall population of star-forming galaxies at a similar redshifts. The Star formation efficiency (~100) and gas mass (M_gas=2.1-9.5x10^{10} M_sun) inferred from the CO(3-2) line depend on the underlying assumptions on the excitation of the transition and the CO-to-H2 conversion factor. However, the combination of this information and the ISM mass estimated from the dust mass suggests that the ISM/gas content of XID2028 is significantly lower than expected for its observed M⋆, sSFR and redshift, based on the most up-to-date calibrations (with gas fraction <20% and depletion time scale <340 Myr). Overall, the constraints we obtain from the far infrared and millimeter data suggest that we are observing QSO feedback able to remove the gas from the host
Bulge growth through disk instabilities in high-redshift galaxies
The role of disk instabilities, such as bars and spiral arms, and the
associated resonances, in growing bulges in the inner regions of disk galaxies
have long been studied in the low-redshift nearby Universe. There it has long
been probed observationally, in particular through peanut-shaped bulges. This
secular growth of bulges in modern disk galaxies is driven by weak,
non-axisymmetric instabilities: it mostly produces pseudo-bulges at slow rates
and with long star-formation timescales. Disk instabilities at high redshift
(z>1) in moderate-mass to massive galaxies (10^10 to a few 10^11 Msun of stars)
are very different from those found in modern spiral galaxies. High-redshift
disks are globally unstable and fragment into giant clumps containing 10^8-10^9
Msun of gas and stars each, which results in highly irregular galaxy
morphologies. The clumps and other features associated to the violent
instability drive disk evolution and bulge growth through various mechanisms,
on short timescales. The giant clumps can migrate inward and coalesce into the
bulge in a few 10^8 yr. The instability in the very turbulent media drives
intense gas inflows toward the bulge and nuclear region. Thick disks and
supermassive black holes can grow concurrently as a result of the violent
instability. This chapter reviews the properties of high-redshift disk
instabilities, the evolution of giant clumps and other features associated to
the instability, and the resulting growth of bulges and associated sub-galactic
components.Comment: 37 pages, 9 figures. Invited refereed review to appear in "Galactic
Bulges", E. Laurikainen, D. Gadotti, R. Peletier (eds.), Springe
ZFOURGE catalogue of AGN candidates: an enhancement of 160-μm-derived star formation rates in active galaxies to z = 3.2
We investigate active galactic nuclei (AGN) candidates within the FourStar Galaxy Evolution Survey (ZFOURGE) to determine the impact they have on star formation in their host galaxies. We first identify a population of radio, X-ray, and infrared-selected AGN by cross-matching the deep Ks-band imaging of ZFOURGE with overlapping multiwavelength data. From this, we construct a mass-complete (log(M∗/M⊙M∗/M⊙) ≥9.75), AGN luminosity limited sample of 235 AGN hosts over z = 0.2–3.2. We compare the rest-frame U − V versus V − J (UVJ) colours and specific star formation rates (sSFRs) of the AGN hosts to a mass-matched control sample of inactive (non-AGN) galaxies. UVJ diagnostics reveal AGN tend to be hosted in a lower fraction of quiescent galaxies and a higher fraction of dusty galaxies than the control sample. Using 160 μm Herschel PACS data, we find the mean specific star formation rate of AGN hosts to be elevated by 0.34 ± 0.07 dex with respect to the control sample across all redshifts. This offset is primarily driven by infrared-selected AGN, where the mean sSFR is found to be elevated by as much as a factor of ∼5. The remaining population, comprised predominantly of X-ray AGN hosts, is found mostly consistent with inactive galaxies, exhibiting only a marginal elevation. We discuss scenarios that may explain these findings and postulate that AGN are less likely to be a dominant mechanism for moderating galaxy growth via quenching than has previously been suggested
Black Holes in the Early Universe
The existence of massive black holes was postulated in the sixties, when the
first quasars were discovered. In the late nineties their reality was proven
beyond doubt, in the Milky way and a handful nearby galaxies. Since then,
enormous theoretical and observational efforts have been made to understand the
astrophysics of massive black holes. We have discovered that some of the most
massive black holes known, weighing billions of solar masses, powered luminous
quasars within the first billion years of the Universe. The first massive black
holes must therefore have formed around the time the first stars and galaxies
formed. Dynamical evidence also indicates that black holes with masses of
millions to billions of solar masses ordinarily dwell in the centers of today's
galaxies. Massive black holes populate galaxy centers today, and shone as
quasars in the past; the quiescent black holes that we detect now in nearby
bulges are the dormant remnants of this fiery past. In this review we report on
basic, but critical, questions regarding the cosmological significance of
massive black holes. What physical mechanisms lead to the formation of the
first massive black holes? How massive were the initial massive black hole
seeds? When and where did they form? How is the growth of black holes linked to
that of their host galaxy? Answers to most of these questions are work in
progress, in the spirit of these Reports on Progress in Physics.Comment: Reports on Progress in Physics, in pres
- …
