139 research outputs found

    G-type antiferromagnetism and orbital ordering due to the crystal field from the rare-earth ions induced by the GdFeO_3-type distortion in RTiO_3 with R=La, Pr, Nd and Sm

    Full text link
    The origin of the antiferromagnetic order and puzzling properties of LaTiO_3 as well as the magnetic phase diagram of the perovskite titanates are studied theoretically. We show that in LaTiO_3, the t_{2g} degeneracy is eventually lifted by the La cations in the GdFeO_3-type structure, which generates a crystal field with nearly trigonal symmetry. This allows the description of the low-energy structure of LaTiO_3 by a single-band Hubbard model as a good starting point. The lowest-orbital occupation in this crystal field stabilizes the AFM(G) state, and well explains the spin-wave spectrum of LaTiO_3 obtained by the neutron scattering experiment. The orbital-spin structures for RTiO_3 with R=Pr, Nd and Sm are also accounted for by the same mechanism. We point out that through generating the R crystal field, the GdFeO_3-type distortion has a universal relevance in determining the orbital-spin structure of the perovskite compounds in competition with the Jahn-Teller mechanism, which has been overlooked in the literature. Since the GdFeO_3-type distortion is a universal phenomenon as is seen in a large number of perovskite compounds, this mechanism may also play important roles in other compounds of this type.Comment: 20 pages, 15 figure

    Search for nucleon decay via modes favored by supersymmetric grand unification models in Super-Kamiokande-I

    Full text link
    We report the results for nucleon decay searches via modes favored by supersymmetric grand unified models in Super-Kamiokande. Using 1489 days of full Super-Kamiokande-I data, we searched for pνˉK+p \to \bar{\nu} K^+, nνˉK0n \to \bar{\nu} K^0, pμ+K0p \to \mu^+ K^0 and pe+K0p \to e^+ K^0 modes. We found no evidence for nucleon decay in any of these modes. We set lower limits of partial nucleon lifetime 2.3×1033\times10^{33}, 1.3×1032\times10^{32}, 1.3×1033\times10^{33} and 1.0×1033\times10^{33} years at 90% confidence level for pνˉK+p \to \bar{\nu} K^+, nνˉK0n \to \bar{\nu} K^0, pμ+K0p \to \mu^+ K^0 and pe+K0p \to e^+ K^0 modes, respectively. These results give a strong constraint on supersymmetric grand unification models.Comment: 14 pages, 13 figure

    Evidence for an oscillatory signature in atmospheric neutrino oscillation

    Full text link
    Muon neutrino disappearance probability as a function of neutrino flight length L over neutrino energy E was studied. A dip in the L/E distribution was observed in the data, as predicted from the sinusoidal flavor transition probability of neutrino oscillation. The observed L/E distribution constrained nu_mu nu_tau neutrino oscillation parameters; 1.9x10^-3 < Delta m^2 < 3.0x10^-3 eV^2 and \sin^2(2theta) > 0.90 at 90% confidence level.Comment: 5 pages, 5 figures, submitted to PR

    Search for Dark Matter WIMPs using Upward Through-going Muons in Super-Kamiokande

    Full text link
    We present the results of indirect searches for Weakly Interacting Massive Particles (WIMPs) with 1679.6 live days of data from the Super-Kamiokande detector using neutrino-induced upward through-going muons. The search is performed by looking for an excess of high energy muon neutrinos from WIMP annihilations in the Sun, the core of the Earth, and the Galactic Center, as compared to the number expected from the atmospheric neutrino background. No statistically significant excess was seen. We calculate flux limits in various angular cones around each of the above celestial objects. We obtain conservative model-independent upper limits on WIMP-nucleon cross-section as a function of WIMP mass and compare these results with the corresponding results from direct dark matter detection experiments.Comment: 10 pages, 14 figures, Submitted to Phys. Rev.

    Limit On the Neutrino Magnetic Moment Using 1496 Days of Super-Kamiokande-i Solar Neutrino Data

    Full text link
    A search for a non-zero neutrino magnetic moment has been conducted using 1496 live days of solar neutrino data from {\SK}. Specifically, we searched for distortions to the energy spectrum of recoil electrons arising from magnetic scattering due to a non-zero neutrino magnetic moment. In the absence of clear signal, we found μν3.6×1010\mu_{\nu} \leq 3.6 \times 10^{-10} μB\mu_{B} at 90% C.L. by fitting to the Super-Kamiokande day/night spectra. The fitting took into account the effect of neutrino oscillation on the shapes of energy spectra. With additional information from other solar neutrino and KamLAND experiments constraining the oscillation region, a limit of μν1.1×1010\mu_{\nu} \leq 1.1 \times 10^{-10} μB\mu_{B} at 90% C.L. was obtained.Comment: 5 pages, 4 figure

    Evidence for muon neutrino oscillation in an accelerator-based experiment

    Get PDF
    We present results for muon neutrino oscillation in the KEK to Kamioka (K2K) long-baseline neutrino oscillation experiment. K2K uses an accelerator-produced muon neutrino beam with a mean energy of 1.3 GeV directed at the Super-Kamiokande detector. We observed the energy dependent disappearance of muon neutrino, which we presume have oscillated to tau neutrino. The probability that we would observe these results if there is no neutrino oscillation is 0.0050% (4.0 sigma).Comment: 5 pages, 4 figure

    Search for coherent charged pion production in neutrino-carbon interactions

    Get PDF
    We report the result from a search for charged-current coherent pion production induced by muon neutrinos with a mean energy of 1.3 GeV. The data are collected with a fully active scintillator detector in the K2K long-baseline neutrino oscillation experiment. No evidence for coherent pion production is observed and an upper limit of 0.60×1020.60 \times 10^{-2} is set on the cross section ratio of coherent pion production to the total charged-current interaction at 90% confidence level. This is the first experimental limit for coherent charged pion production in the energy region of a few GeV.Comment: 5 pages, 4 figure

    The Hubbard model within the equations of motion approach

    Full text link
    The Hubbard model has a special role in Condensed Matter Theory as it is considered as the simplest Hamiltonian model one can write in order to describe anomalous physical properties of some class of real materials. Unfortunately, this model is not exactly solved except for some limits and therefore one should resort to analytical methods, like the Equations of Motion Approach, or to numerical techniques in order to attain a description of its relevant features in the whole range of physical parameters (interaction, filling and temperature). In this manuscript, the Composite Operator Method, which exploits the above mentioned analytical technique, is presented and systematically applied in order to get information about the behavior of all relevant properties of the model (local, thermodynamic, single- and two- particle ones) in comparison with many other analytical techniques, the above cited known limits and numerical simulations. Within this approach, the Hubbard model is shown to be also capable to describe some anomalous behaviors of the cuprate superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference

    Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions

    Get PDF
    We review the most important experimental results from the first three years of nucleus-nucleus collision studies at RHIC, with emphasis on results from the STAR experiment, and we assess their interpretation and comparison to theory. The theory-experiment comparison suggests that central Au+Au collisions at RHIC produce dense, rapidly thermalizing matter characterized by: (1) initial energy densities above the critical values predicted by lattice QCD for establishment of a Quark-Gluon Plasma (QGP); (2) nearly ideal fluid flow, marked by constituent interactions of very short mean free path, established most probably at a stage preceding hadron formation; and (3) opacity to jets. Many of the observations are consistent with models incorporating QGP formation in the early collision stages, and have not found ready explanation in a hadronic framework. However, the measurements themselves do not yet establish unequivocal evidence for a transition to this new form of matter. The theoretical treatment of the collision evolution, despite impressive successes, invokes a suite of distinct models, degrees of freedom and assumptions of as yet unknown quantitative consequence. We pose a set of important open questions, and suggest additional measurements, at least some of which should be addressed in order to establish a compelling basis to conclude definitively that thermalized, deconfined quark-gluon matter has been produced at RHIC.Comment: 101 pages, 37 figures; revised version to Nucl. Phys.
    corecore