139 research outputs found
G-type antiferromagnetism and orbital ordering due to the crystal field from the rare-earth ions induced by the GdFeO_3-type distortion in RTiO_3 with R=La, Pr, Nd and Sm
The origin of the antiferromagnetic order and puzzling properties of LaTiO_3
as well as the magnetic phase diagram of the perovskite titanates are studied
theoretically. We show that in LaTiO_3, the t_{2g} degeneracy is eventually
lifted by the La cations in the GdFeO_3-type structure, which generates a
crystal field with nearly trigonal symmetry. This allows the description of the
low-energy structure of LaTiO_3 by a single-band Hubbard model as a good
starting point. The lowest-orbital occupation in this crystal field stabilizes
the AFM(G) state, and well explains the spin-wave spectrum of LaTiO_3 obtained
by the neutron scattering experiment. The orbital-spin structures for RTiO_3
with R=Pr, Nd and Sm are also accounted for by the same mechanism. We point out
that through generating the R crystal field, the GdFeO_3-type distortion has a
universal relevance in determining the orbital-spin structure of the perovskite
compounds in competition with the Jahn-Teller mechanism, which has been
overlooked in the literature. Since the GdFeO_3-type distortion is a universal
phenomenon as is seen in a large number of perovskite compounds, this mechanism
may also play important roles in other compounds of this type.Comment: 20 pages, 15 figure
Search for nucleon decay via modes favored by supersymmetric grand unification models in Super-Kamiokande-I
We report the results for nucleon decay searches via modes favored by
supersymmetric grand unified models in Super-Kamiokande. Using 1489 days of
full Super-Kamiokande-I data, we searched for , , and modes. We found no
evidence for nucleon decay in any of these modes. We set lower limits of
partial nucleon lifetime 2.3, 1.3,
1.3 and 1.0 years at 90% confidence level for , , and modes, respectively. These results give a strong constraint on
supersymmetric grand unification models.Comment: 14 pages, 13 figure
Evidence for an oscillatory signature in atmospheric neutrino oscillation
Muon neutrino disappearance probability as a function of neutrino flight
length L over neutrino energy E was studied. A dip in the L/E distribution was
observed in the data, as predicted from the sinusoidal flavor transition
probability of neutrino oscillation. The observed L/E distribution constrained
nu_mu nu_tau neutrino oscillation parameters; 1.9x10^-3 < Delta m^2 <
3.0x10^-3 eV^2 and \sin^2(2theta) > 0.90 at 90% confidence level.Comment: 5 pages, 5 figures, submitted to PR
Search for Dark Matter WIMPs using Upward Through-going Muons in Super-Kamiokande
We present the results of indirect searches for Weakly Interacting Massive
Particles (WIMPs) with 1679.6 live days of data from the Super-Kamiokande
detector using neutrino-induced upward through-going muons. The search is
performed by looking for an excess of high energy muon neutrinos from WIMP
annihilations in the Sun, the core of the Earth, and the Galactic Center, as
compared to the number expected from the atmospheric neutrino background. No
statistically significant excess was seen. We calculate flux limits in various
angular cones around each of the above celestial objects. We obtain
conservative model-independent upper limits on WIMP-nucleon cross-section as a
function of WIMP mass and compare these results with the corresponding results
from direct dark matter detection experiments.Comment: 10 pages, 14 figures, Submitted to Phys. Rev.
Limit On the Neutrino Magnetic Moment Using 1496 Days of Super-Kamiokande-i Solar Neutrino Data
A search for a non-zero neutrino magnetic moment has been conducted using
1496 live days of solar neutrino data from {\SK}. Specifically, we searched for
distortions to the energy spectrum of recoil electrons arising from magnetic
scattering due to a non-zero neutrino magnetic moment. In the absence of clear
signal, we found at 90% C.L. by
fitting to the Super-Kamiokande day/night spectra. The fitting took into
account the effect of neutrino oscillation on the shapes of energy spectra.
With additional information from other solar neutrino and KamLAND experiments
constraining the oscillation region, a limit of at 90% C.L. was obtained.Comment: 5 pages, 4 figure
Evidence for muon neutrino oscillation in an accelerator-based experiment
We present results for muon neutrino oscillation in the KEK to Kamioka (K2K)
long-baseline neutrino oscillation experiment. K2K uses an accelerator-produced
muon neutrino beam with a mean energy of 1.3 GeV directed at the
Super-Kamiokande detector. We observed the energy dependent disappearance of
muon neutrino, which we presume have oscillated to tau neutrino. The
probability that we would observe these results if there is no neutrino
oscillation is 0.0050% (4.0 sigma).Comment: 5 pages, 4 figure
Search for coherent charged pion production in neutrino-carbon interactions
We report the result from a search for charged-current coherent pion
production induced by muon neutrinos with a mean energy of 1.3 GeV. The data
are collected with a fully active scintillator detector in the K2K
long-baseline neutrino oscillation experiment. No evidence for coherent pion
production is observed and an upper limit of is set on
the cross section ratio of coherent pion production to the total
charged-current interaction at 90% confidence level. This is the first
experimental limit for coherent charged pion production in the energy region of
a few GeV.Comment: 5 pages, 4 figure
The Hubbard model within the equations of motion approach
The Hubbard model has a special role in Condensed Matter Theory as it is
considered as the simplest Hamiltonian model one can write in order to describe
anomalous physical properties of some class of real materials. Unfortunately,
this model is not exactly solved except for some limits and therefore one
should resort to analytical methods, like the Equations of Motion Approach, or
to numerical techniques in order to attain a description of its relevant
features in the whole range of physical parameters (interaction, filling and
temperature). In this manuscript, the Composite Operator Method, which exploits
the above mentioned analytical technique, is presented and systematically
applied in order to get information about the behavior of all relevant
properties of the model (local, thermodynamic, single- and two- particle ones)
in comparison with many other analytical techniques, the above cited known
limits and numerical simulations. Within this approach, the Hubbard model is
shown to be also capable to describe some anomalous behaviors of the cuprate
superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference
Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions
We review the most important experimental results from the first three years
of nucleus-nucleus collision studies at RHIC, with emphasis on results from the
STAR experiment, and we assess their interpretation and comparison to theory.
The theory-experiment comparison suggests that central Au+Au collisions at RHIC
produce dense, rapidly thermalizing matter characterized by: (1) initial energy
densities above the critical values predicted by lattice QCD for establishment
of a Quark-Gluon Plasma (QGP); (2) nearly ideal fluid flow, marked by
constituent interactions of very short mean free path, established most
probably at a stage preceding hadron formation; and (3) opacity to jets. Many
of the observations are consistent with models incorporating QGP formation in
the early collision stages, and have not found ready explanation in a hadronic
framework. However, the measurements themselves do not yet establish
unequivocal evidence for a transition to this new form of matter. The
theoretical treatment of the collision evolution, despite impressive successes,
invokes a suite of distinct models, degrees of freedom and assumptions of as
yet unknown quantitative consequence. We pose a set of important open
questions, and suggest additional measurements, at least some of which should
be addressed in order to establish a compelling basis to conclude definitively
that thermalized, deconfined quark-gluon matter has been produced at RHIC.Comment: 101 pages, 37 figures; revised version to Nucl. Phys.
- …