2,080 research outputs found
The Wide-Angle Outflow of the Lensed z = 1.51 AGN HS 0810+2554
We present results from X-ray observations of the gravitationally lensed z =
1.51 AGN HS 0810+2554 performed with the Chandra X-ray Observatory and
XMM-Newton. Blueshifted absorption lines are detected in both observations at
rest-frame energies ranging between ~1-12 keV at > 99% confidence. The inferred
velocities of the outflowing components range between ~0.1c and ~0.4c. A strong
emission line at ~6.8 keV accompanied by a significant absorption line at ~7.8
keV is also detected in the Chandra observation. The presence of these lines is
a characteristic feature of a P-Cygni profile supporting the presence of an
expanding outflowing highly ionized iron absorber in this quasar. Modeling of
the P-Cygni profile constrains the covering factor of the wind to be > 0.6,
assuming disk shielding. A disk-reflection component is detected in the
XMM-Newton observation accompanied by blueshifted absorption lines. The
XMM-Newton observation constrains the inclination angle to be < 45 degrees at
90% confidence, assuming the hard excess is due to blurred reflection from the
accretion disk. The detection of an ultrafast and wide-angle wind in an AGN
with intrinsic narrow absorption lines (NALs) would suggest that quasar winds
may couple efficiently with the intergalactic medium and provide significant
feedback if ubiquitous in all NAL and BAL quasars. We estimate the mass-outflow
rate of the absorbers to lie in the range of 1.5 and 3.4 Msolar/yr for the two
observations. We find the fraction of kinetic to electromagnetic luminosity
released by HS 0810+2554 is large (epsilon = 9 (-6,+8)) suggesting that
magnetic driving is likely a significant contributor to the acceleration of
this outflow.Comment: 27 pages, 13 figures, Accepted for publication in Ap
ALKALI-RICH FRAGMENTS IN LL-CHONDRITIC BRECCIAS.
第2回極域科学シンポジウム/第34回南極隕石シンポジウム 11月17日(木) 国立国語研究所 2階講
Visible and Near-Infrared Spectral Survey of Select HED Meteorite Samples Stored at the National Institute of Polar Research.
第2回極域科学シンポジウム/第34回南極隕石シンポジウム 11月18日(金) 国立国語研究所 2階講
Possible Origins of Magmatic and Isotopic Heterogeneity in Zagami.
第3回極域科学シンポジウム/第35回南極隕石シンポジウム 11月29日(木) 国立国語研究所 2階講
New Mechanism for Electronic Energy Relaxation in Nanocrystals
The low-frequency vibrational spectrum of an isolated nanometer-scale solid
differs dramatically from that of a bulk crystal, causing the decay of a
localized electronic state by phonon emission to be inhibited. We show,
however, that an electron can also interact with the rigid translational motion
of a nanocrystal. The form of the coupling is dictated by the equivalence
principle and is independent of the ordinary electron-phonon interaction. We
calculate the rate of nonradiative energy relaxation provided by this mechanism
and establish its experimental observability.Comment: 4 pages, Submitted to Physical Review
- …
