5,671 research outputs found

    Position-sensitive detector for the 6-meter optical telescope

    Full text link
    The Position-Sensitive Detector (PSD) for photometrical and spectral observation on the 6-meter optical telescope of the Special Astrophysical Observatory (Russia) is described. The PSD consists of a position-sensitive tube, amplifiers of output signals, analog-to-digital converters (ADC) and a digital logic plate, which produces a signal for ADC start and an external strob pulse for reading information by registration system. If necessary, the thermoelectric cooler can be used. The position-sensitive tube has the following main elements: a photocathode, electrodes of inverting optics, a block of microchannel plates (MCP) and a position-sensitive collector of quadrant type. The main parameters of the PSD are the diameter of the sensitive surface is 25 mm, the spatial resolution is better than 100 (\mu)m in the centre and a little worse on the periphery; the dead time is near 0.5 (\mu)s; the detection quantum efficiency is defined by the photocathode and it is not less than 0.1, as a rule; dark current is about hundreds of cps, or less, when cooling. PSD spectral sensitivity depends on the type of photocathode and input window material. We use a multialkali photocathode and a fiber or UV-glass, which gives the short- wave cut of 360 nm or 250 nm, respectively.Comment: 4 pages, 7 figures, to be published in Nuclear Instruments & Methods in Physics Researc

    Phase and Intensity Distributions of Individual Pulses of PSR B0950+08

    Get PDF
    The distribution of the intensities of individual pulses of PSR B0950+08 as a function of the longitudes at which they appear is analyzed. The flux density of the pulsar at 111 MHz varies strongly from day to day (by up to a factor of 13) due to the passage of the radiation through the interstellar plasma (interstellar scintillation). The intensities of individual pulses can exceed the amplitude of the mean pulse profile, obtained by accumulating 770 pulses, by more than an order of magnitude. The intensity distribution along the mean profile is very different for weak and strong pulses. The differential distribution function for the intensities is a power law with index n = -1.1 +- 0.06 up to peak flux densities for individual pulses of the order of 160 Jy

    Scattering and Diffraction in Magnetospheres of Fast Pulsars

    Get PDF
    We apply a theory of wave propagation through a turbulent medium to the scattering of radio waves in pulsar magnetospheres. We find that under conditions of strong density modulation the effects of magnetospheric scintillations in diffractive and refractive regimes may be observable. The most distinctive feature of the magnetospheric scintillations is their independence on frequency. Results based on diffractive scattering due to small scale inhomogeneities give a scattering angle that may be as large as 0.1 radians, and a typical decorrelation time of 10810^{-8} seconds. Refractive scattering due to large scale inhomogeneities is also possible, with a typical angle of 10310^{-3} radians and a correlation time of the order of 10410^{-4} seconds. Temporal variation in the plasma density may also result in a delay time of the order of 10410^{-4} seconds. The different scaling of the above quantities with frequency may allow one to distinguish the effects of propagation through a pulsar magnetosphere from the interstellar medium. In particular, we expect that the magnetospheric scintillations are relatively more important for nearby pulsars when observed at high frequencies.Comment: 19 pages, 1 Figur

    CEP-stable Tunable THz-Emission Originating from Laser-Waveform-Controlled Sub-Cycle Plasma-Electron Bursts

    Full text link
    We study THz-emission from a plasma driven by an incommensurate-frequency two-colour laser field. A semi-classical transient electron current model is derived from a fully quantum-mechanical description of the emission process in terms of sub-cycle field-ionization followed by continuum-continuum electron transitions. For the experiment, a CEP-locked laser and a near-degenerate optical parametric amplifier are used to produce two-colour pulses that consist of the fundamental and its near-half frequency. By choosing two incommensurate frequencies, the frequency of the CEP-stable THz-emission can be continuously tuned into the mid-IR range. This measured frequency dependence of the THz-emission is found to be consistent with the semi-classical transient electron current model, similar to the Brunel mechanism of harmonic generation

    Hadronization corrections to helicity components of the fragmentation function

    Full text link
    In the hadronic decays of Z, gluon emission leads to the appearance of the longitudinal component of the fragmentation function, F_L. Measurement of F_L and the transverse component, F_T, could thus provide an insight into the gluon fragmentation function. However, hadronization corrections at low x can be significant. Here we present a method of accounting for such corrections, using the JETSET event generator as illustration.Comment: 11 pages, 5 figure

    Atlas Data-Challenge 1 on NorduGrid

    Full text link
    The first LHC application ever to be executed in a computational Grid environment is the so-called ATLAS Data-Challenge 1, more specifically, the part assigned to the Scandinavian members of the ATLAS Collaboration. Taking advantage of the NorduGrid testbed and tools, physicists from Denmark, Norway and Sweden were able to participate in the overall exercise starting in July 2002 and continuing through the rest of 2002 and the first part of 2003 using solely the NorduGrid environment. This allowed to distribute input data over a wide area, and rely on the NorduGrid resource discovery mechanism to find an optimal cluster for job submission. During the whole Data-Challenge 1, more than 2 TB of input data was processed and more than 2.5 TB of output data was produced by more than 4750 Grid jobs.Comment: Talk from the 2003 Computing in High Energy Physics and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 7 pages, 3 ps figure

    The NorduGrid architecture and tools

    Full text link
    The NorduGrid project designed a Grid architecture with the primary goal to meet the requirements of production tasks of the LHC experiments. While it is meant to be a rather generic Grid system, it puts emphasis on batch processing suitable for problems encountered in High Energy Physics. The NorduGrid architecture implementation uses the \globus{} as the foundation for various components, developed by the project. While introducing new services, the NorduGrid does not modify the Globus tools, such that the two can eventually co-exist. The NorduGrid topology is decentralized, avoiding a single point of failure. The NorduGrid architecture is thus a light-weight, non-invasive and dynamic one, while robust and scalable, capable of meeting most challenging tasks of High Energy Physics.Comment: Talk from the 2003 Computing in High Energy Physics and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 9 pages,LaTeX, 4 figures. PSN MOAT00
    corecore