5,774 research outputs found
Temperature-dependent rate coefficients for the reactions of the hydroxyl radical with the atmospheric biogenics isoprene, alpha-pinene and delta-3-carene
Pulsed laser methods for OH generation and detection were used to study atmospheric degradation reactions for three important biogenic gases: OHCisoprene (Reaction R1), OH+α-pinene (Reaction R2) and OH+Δ- 3-carene (Reaction R3). Gas-phase rate coefficients were characterized by non-Arrhenius kinetics for all three reactions. For (R1), k1 (241-356 K)= (1:93±0:08)× 10-11 exp{(466±12)/T} cm3 molecule-1 s-1 was determined, with a room temperature value of k1 (297 K)= (9:3± 0:4)×10-11 cm3 molecule-1 s-1, independent of bath-gas pressure (5-200 Torr) and composition (MDN2 or air). Accuracy and precision were enhanced by online optical monitoring of isoprene, with absolute concentrations obtained via an absorption cross section, αisoprene = (1:28±0:06)× 10-17 cm2 molecule-1 at λ = 184:95 nm, determined in this work. These results indicate that significant discrepancies between previous absolute and relative-rate determinations of k1 result in part from σ values used to derive the isoprene concentration in high-precision absolute determinations. Similar methods were used to determine rate coefficients (in 10-11 cm3 molecule-1 s-1/ for (R2)-(R3): k2 (238-357 K)= (1:83±0:04) ×exp{(330±6)/T } and k3 (235-357 K)= (2:48±0:14) ×exp{(357±17)/T }. This is the first temperature-dependent dataset for (R3) and enables the calculation of reliable atmospheric lifetimes with respect to OH removal for e.g. boreal forest springtime conditions. Room temperature values of k2 (296 K)= (5:4±0:2) ×10-11 cm3 molecule-1 s-1 and k3 (297 K)= (8:1±0:3)×10-11 cm3 molecule-1 s-1 were independent of bathgas pressure (7-200 Torr, N2 or air) and in good agreement with previously reported values. In the course of this work, 184.95 nm absorption cross sections were determined: σ = (1:54±0:08) ×10-17 cm2 molecule-1 for α-pinene and (2:40±0:12)×10-17 cm2 molecule-1 for 1-3-carene
Kolmogorov Similarity Hypotheses for Scalar Fields: Sampling Intermittent Turbulent Mixing in the Ocean and Galaxy
Kolmogorov's three universal similarity hypotheses are extrapolated to
describe scalar fields like temperature mixed by turbulence. By the analogous
Kolmogorov third hypothesis for scalars, temperature dissipation rates chi
averaged over lengths r > L_K should be lognormally distributed with
intermittency factors I that increase with increasing turbulence energy length
scales L_O as I_chi-r = m_T ln(L_O/r). Tests of Kolmogorovian velocity and
scalar universal similarity hypotheses for very large ranges of turbulence
length and time scales are provided by data from the ocean and the Galactic
interstellar medium. The universal constant for turbulent mixing intermittency
m_T is estimated from oceanic data to be 0.44+-0.01, which is remarkably close
to estimates for Kolmogorov's turbulence intermittency constant m_u of
0.45+-0.05 from Galactic as well as atmospheric data. Extreme intermittency
complicates the oceanic sampling problem, and may lead to quantitative and
qualitative undersampling errors in estimates of mean oceanic dissipation rates
and fluxes. Intermittency of turbulence and mixing in the interstellar medium
may be a factor in the formation of stars.Comment: 23 pages original of Proc. Roy. Soc. article, 8 figures; in
"Turbulence and Stochastic Processes: Kolmogorov's ideas 50 years on", London
The Royal Society, 1991, J.C.R. Hunt, O.M. Phillips, D. Williams Eds., pages
1-240, vol. 434 (no. 1890) Proc. Roy. Soc. Lond. A, PDF fil
Exclusion of the Locus for Autosomal Recessive Pseudohypoaldosteronism Type 1 from the Mineralocorticoid Receptor Gene Region on Human Chromosome 4q by Linkage Analysis.
Pseudohypoaldosteronism type 1 (PHA1) is an uncommon inherited disorder characterized by salt-wasting in infancy arising from target organ unresponsiveness to mineralocorticoids. Clinical expression of the disease varies from severely affected infants who may die to apparently asymptomatic individuals. Inheritance is Mendelian and may be either autosomal dominant or autosomal recessive. A defect in the mineralocorticoid receptor has been implicated as a likely cause of PHA1. The gene for human mineralocorticoid receptor (MLR) has been cloned and physically mapped to human chromosome 4q31.1-31.2. The etiological role of MLR in autosomal recessive PHA1 was investigated by performing linkage analysis between PHA1 and three simple sequence length polymorphisms (D4S192, D4S1548, and D4S413) on chromosome 4q in 10 consanguineous families. Linkage analysis was carried out assuming autosomal recessive inheritance with full penetrance and zero phenocopy rate using the MLINK program for two-point analysis and the HOMOZ program for multipoint analysis. Lod scores of less than -2 were obtained over the whole region from D4S192 to D4S413 encompassing MLR. This provdes evidence against MLR as the site of mutations causing PHA1 in the majority of autosomal recessive families
TEACHING MARKETING AND MANAGEMENT TO AN EXTENSION AUDIENCE IN AN INTER-DISCIPLINARY SETTING
This paper discusses how economists utilize an inter-disciplinary workshop to teach marketing and management concepts to beef cattle producers and beef industry advisors. Range and animal scientists along with economists teach concepts in the classroom and then demonstrate these concepts with hands-on field activities in an 8-day Ranch Practicum, spread over an 8-month period.Teaching/Communication/Extension/Profession,
SDSS Unveils a Population of Intrinsically Faint Cataclysmic Variables at the Minimum Orbital Period
We discuss the properties of 137 cataclysmic variables (CVs) which are included in the Sloan Digital Sky Survey (SDSS) spectroscopic data base, and for which accurate orbital periods have been measured. 92 of these systems are new discoveries from SDSS and were followed-up in more detail over the past few years. 45 systems were previously identified as CVs because of the detection of optical outbursts and/or X-ray emission, and subsequently re-identified from the SDSS spectroscopy. The period distribution of the SDSS CVs differs dramatically from that of all the previously known CVs, in particular it contains a significant accumulation of systems in the orbital period range 80–86 min. We identify this feature as the elusive ‘period minimum spike’ predicted by CV population models, which resolves a long-standing discrepancy between compact binary evolution theory and observations. We show that this spike is almost entirely due to the large number of CVs with very low accretion activity identified by SDSS. The optical spectra of these systems are dominated by emission from the white dwarf photosphere, and display little or no spectroscopic signature from the donor stars, suggesting very low mass companion stars. We determine the average absolute magnitude of these low-luminosity CVs at the period minimum to be 〈Mg〉= 11.6 ± 0.7. Comparison of the SDSS CV sample to the CVs found in the Hamburg Quasar Survey and the Palomar Green Survey suggests that the depth of SDSS is the key ingredient resulting in the discovery of a large number of intrinsically faint short-period systems
Spot-fire distance increases disproportionately for wildfires compared to prescribed fires as grasslands transition to \u3ci\u3eJuniperus\u3c/i\u3e woodlands
Woody encroachment is one of the greatest threats to grasslands globally, depleting a suite of ecosystem services, including forage production and grassland biodiversity. Recent evidence also suggests that woody encroachment increases wildfire danger, particularly in the Great Plains of North America, where highly volatile Juniperus spp. convert grasslands to an alternative woodland state. Spot-fire distances are a critical component of wildfire danger, describing the distance over which embers from one fire can cause a new fire ignition, potentially far away from fire suppression personnel. We assess changes in spot-fire distances as grasslands experience Juniperus encroachment to an alternative woodland state and how spot-fire distances differ under typical prescribed fire conditions compared to conditions observed during wildfire. We use BehavePlus to calculate spot-fire distances for these scenarios within the Loess Canyons Experimental Landscape, Nebraska, U.S.A., a 73,000-ha ecoregion where private-lands fire management is used to reduce woody encroachment and prevent further expansion of Juniperus fuels. We found prescribed fire used to control woody encroachment had lower maximum spot-fire distances compared to wildfires and, correspondingly, a lower amount of land area at risk to spot-fire occurrence. Under more extreme wildfire scenarios, spot-fire distances were 2 times higher in grasslands, and over 3 times higher in encroached grasslands and Juniperus woodlands compared to fires burned under prescribed fire conditions. Maximum spot-fire distance was 450% greater in Juniperus woodlands compared to grasslands and exposed an additional 14,000 ha of receptive fuels, on average, to spot-fire occurrence within the Loess Canyons Experimental Landscape. This study demonstrates that woody encroachment drastically increases risks associated with wildfire, and that spot fire distances associated with woody encroachment are much lower in prescribed fires used to control woody encroachment compared to wildfires
Recent Changes in Irish Fertility. Quarterly Economic Commentary Special Article, May 1984
The main purpose of this paper is to provide a broad description of fertility
trends in Ireland over the last two decades. The analysis investigates in
particular whether there are regional (i.e., county) differences in relation to
the levels of fertility and how these have changed. In the final part of the paper
we discuss the likely future pattern of fertility trends and consider some
economic and social implications arising therefrom. The last-mentioned aspect
is now a matter of considerable significance since there are indications (from
the annual births total) that the general decline in fertility has escalated to
such an extent in recent years that the effects may be quite substantial and
materialise within a relatively short period of time
Eigen electric moments of magnetic-dipolar modes in quasi-2D ferrite disk particles
A property associated with a vortex structure becomes evident from an
analysis of confinement phenomena of magnetic oscillations in a quasi-2D
ferrite disk with a dominating role of magnetic-dipolar
(non-exchange-interaction) spectra. The vortices are guaranteed by the chiral
edge states of magnetic-dipolar modes which result in appearance of eigen
electric moments oriented normally to the disk plane. Due to the
eigen-electric-moment properties, a ferrite disk placed in a microwave cavity
is strongly affected by the cavity RF electric field with a clear evidence for
multi-resonance oscillations. For different cavity parameters, one may observe
the "resonance absorption" and "resonance repulsion" behaviors
Influence of Age on Warfarin Dose, Anticoagulation Control, and Risk of Hemorrhage
Objective
We assessed the influence of age on warfarin dose, percentage time in target range (PTTR), and risk of major hemorrhage.
Design
Warfarin users recruited into a large prospective inception cohort study were categorized into three age groups: young (younger than 50 yrs), middle aged (50–70 yrs), and elderly (older than 70 yrs). The influence of age on warfarin dose and PTTR was assessed using regression analysis; risk of major hemorrhage was assessed using proportional hazards analysis. Models were adjusted for demographic, clinical, and genetic factors.
Setting
Two outpatient anticoagulation clinics.
Participants
A total of 1498 anticoagulated patients.
Outcomes
Warfarin dose (mg/day), PTTR, major hemorrhage.
Results
Of the 1498 patients, 22.8% were young, 44.1% were middle aged, and 33.1% were elderly. After accounting for clinical and genetic factors, compared with young warfarin users, warfarin dose requirements were 10.6% lower among the middle aged and an additional 10.6% lower for the elderly. Compared with young patients, middle-aged and elderly patients spent more time in target international normalized ratio (INR) range (p<0.0001), despite having fewer INR assessments (p<0.0001). Compared with young warfarin users, absolute risk of hemorrhage was marginally higher among the middle aged (p=0.08) and significantly higher among the elderly (p=0.016). Compared with young warfarin users, after adjustment, the relative risk of hemorrhage increased by 31% for each age category (p=0.026).
Conclusions
In a real-world setting, despite achieving better anticoagulation control, elderly patients had a higher risk of major hemorrhagic events. As the population ages and the candidacy for oral anticoagulation increases, strategies that mitigate the elevated risk of hemorrhage need to be identified
Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance.
Mycobacterium tuberculosis is a serious human pathogen threat exhibiting complex evolution of antimicrobial resistance (AMR). Accordingly, the many publicly available datasets describing its AMR characteristics demand disparate data-type analyses. Here, we develop a reference strain-agnostic computational platform that uses machine learning approaches, complemented by both genetic interaction analysis and 3D structural mutation-mapping, to identify signatures of AMR evolution to 13 antibiotics. This platform is applied to 1595 sequenced strains to yield four key results. First, a pan-genome analysis shows that M. tuberculosis is highly conserved with sequenced variation concentrated in PE/PPE/PGRS genes. Second, the platform corroborates 33 genes known to confer resistance and identifies 24 new genetic signatures of AMR. Third, 97 epistatic interactions across 10 resistance classes are revealed. Fourth, detailed structural analysis of these genes yields mechanistic bases for their selection. The platform can be used to study other human pathogens
- …