891 research outputs found

    The Blueprint for Rabies Prevention and Control: A Novel Operational Toolkit for Rabies Elimination

    Get PDF
    Rabies is a prime example of a neglected tropical disease that mostly affects communities suffering from inequitable health care [1]. The false perception that rabies impacts on society are low is due to case under-reporting and limited awareness of the disease burden [2], [3]. Effective tools for elimination of terrestrial rabies are available [4]. While the sustained deployment of these tools has led to some remarkably successful interventions [5], [6], canine rabies continues to claim lives in rabies-endemic countries and areas of re-emergence, where >95% of human deaths occur as a result of bites by rabid domestic dogs [7], [8]. Control programs targeting dogs can effectively reduce the risk of rabies to humans [3], [9]. However, the design and implementation of such programs still pose considerable challenges to local governments, and a lack of easy-to-use guidelines has been identified as an important reason for this

    Driving improvements in emerging disease surveillance through locally-relevant capacity strengthening

    Get PDF
    Emerging infectious diseases (EIDs) threaten the health of people, animals, and crops globally, but our ability to predict their occurrence is limited. Current public health capacity and ability to detect and respond to EIDs is typically weakest in low- and middle-income countries (LMICs). Many known drivers of EID emergence also converge in LMICs. Strengthening capacity for surveillance of diseases of relevance to local populations can provide a mechanism for building the cross-cutting and flexible capacities needed to tackle both the burden of existing diseases and EID threats. A focus on locally relevant diseases in LMICs and the economic, social, and cultural contexts of surveillance can help address existing inequalities in health systems, improve the capacity to detect and contain EIDs, and contribute to broader global goals for development

    Where Rabies Is Not a Disease. Bridging Healthworlds to Improve Mutual Understanding and Prevention of Rabies

    Get PDF
    Deeply embedded in local social, cultural, and religious settings, traditional healing is part of dog bite and rabies management in many rabies endemic countries. Faith healing, which usually encompasses a more holistic approach to health including physical, mental and social dimensions, is rare in the context of rabies. In Gujarat, Western India, the Hindu goddess Hadkai Mata is worshiped by low-caste communities as the Mother of Rabies in the event of a dog bite to a person or their livestock. This belief might influence people's attitudes and behaviors toward rabies prevention but has never been investigated. Through 31 in-depth interviews with healers and staff of Hadkai Mata temples, this paper explores the system of knowledge around dog and human rabies that is built and shared in these places of worship and healing. Qualitative and quantitative data were analyzed looking for convergences and divergences with the recently launched National Action Plan for dog-mediated Rabies Elimination. Results suggest that while the etiology of human rabies as a social illness is usually explained as the goddess's wish to correct misbehaving people and restore positive interpersonal relations, there is some appreciation for the biological processes of infection that lead to rabies as a physical disease. Hadkai Mata is believed to cure rabies if her patients undergo the necessary process of moral growth. Although conventional post-exposure prophylaxis is not opposed per se, it is often delayed by patients who seek traditional treatment first. Some reluctance was expressed toward mass dog vaccination because it is seen as an interference in how the goddess controls dogs, by enraging them—hence infecting them with rabies—and sending them to bite wrongdoers. Addressing these cultural perceptions is likely to be critical in achieving effective control of dog rabies in this region. The study highlights the value of multidisciplinary approaches in the control and elimination of rabies, as well as other zoonoses. This includes the importance of understanding different culturally- and religiously- mediated ways in which humans relate to animals; and looking for points of convergence and mutual understanding, upon which context-tailored, linguistically-accurate, locally acceptable, feasible and effective strategies can be designed

    Evaluation of two lyophilized molecular assays to rapidly detect foot-and-mouth disease virus directly from clinical samples in field settings

    Get PDF
    Accurate, timely diagnosis is essential for the control, monitoring and eradication of foot‐and‐mouth disease (FMD). Clinical samples from suspect cases are normally tested at reference laboratories. However, transport of samples to these centralized facilities can be a lengthy process that can impose delays on critical decision making. These concerns have motivated work to evaluate simple‐to‐use technologies, including molecular‐based diagnostic platforms, that can be deployed closer to suspect cases of FMD. In this context, FMD virus (FMDV)‐specific reverse transcription loop‐mediated isothermal amplification (RT‐LAMP) and real‐time RT‐PCR (rRT‐PCR) assays, compatible with simple sample preparation methods and in situ visualization, have been developed which share equivalent analytical sensitivity with laboratory‐based rRT‐PCR. However, the lack of robust ‘ready‐to‐use kits’ that utilize stabilized reagents limits the deployment of these tests into field settings. To address this gap, this study describes the performance of lyophilized rRT‐PCR and RT‐LAMP assays to detect FMDV. Both of these assays are compatible with the use of fluorescence to monitor amplification in real‐time, and for the RT‐LAMP assays end point detection could also be achieved using molecular lateral flow devices. Lyophilization of reagents did not adversely affect the performance of the assays. Importantly, when these assays were deployed into challenging laboratory and field settings within East Africa they proved to be reliable in their ability to detect FMDV in a range of clinical samples from acutely infected as well as convalescent cattle. These data support the use of highly sensitive molecular assays into field settings for simple and rapid detection of FMDV

    Surveillance guidelines for disease elimination: a case study of canine rabies

    Get PDF
    Surveillance is a critical component of disease control programmes but is often poorly resourced, particularly in developing countries lacking good infrastructure and especially for zoonoses which require combined veterinary and medical capacity and collaboration. Here we examine how successful control, and ultimately disease elimination, depends on effective surveillance. We estimated that detection probabilities of <0.1 are broadly typical of rabies surveillance in endemic countries and areas without a history of rabies. Using outbreak simulation techniques we investigated how the probability of detection affects outbreak spread, and outcomes of response strategies such as time to control an outbreak, probability of elimination, and the certainty of declaring freedom from disease. Assuming realistically poor surveillance (probability of detection <0.1), we show that proactive mass dog vaccination is much more effective at controlling rabies and no more costly than campaigns that vaccinate in response to case detection. Control through proactive vaccination followed by 2 years of continuous monitoring and vaccination should be sufficient to guarantee elimination from an isolated area not subject to repeat introductions. We recommend that rabies control programmes ought to be able to maintain surveillance levels that detect at least 5% (and ideally 10%) of all cases to improve their prospects of eliminating rabies, and this can be achieved through greater intersectoral collaboration. Our approach illustrates how surveillance is critical for the control and elimination of diseases such as canine rabies and can provide minimum surveillance requirements and technical guidance for elimination programmes under a broad-range of circumstances

    The Modulatory Effect of Ellagic Acid and Rosmarinic Acid on Ultraviolet-B-Induced Cytokine/Chemokine Gene Expression in Skin Keratinocyte (HaCaT) Cells

    Get PDF
    Ultraviolet radiation (UV) induces an increase in multiple cutaneous inflammatory mediators. Ellagic acid (EA) and rosmarinic acid (RA) are natural anti-inflammatory and immunomodulatory compounds found in many plants, fruits, and nuts. We assessed the ability of EA and RA to modulate IL-1ÎČ, IL-6, IL-8, IL-10, MCP-1, and TNF-α gene expression in HaCaT cells after UVB irradiation. Cells were treated with UVB (100 mJ/cm(2)) and simultaneously with EA (5 ΌM in 0.1% DMSO) or RA (2.7 ΌM in 0.5% DMSO). Moreover, these substances were added to the UVB-irradiated cells 1 h or 6 h before harvesting, depending on the established UVB-induced cytokine expression peak. Cytokine gene expression was examined using quantitative real time polymerase chain reaction. RA produced a significant reduction in UVB-induced expression of IL-6, IL-8, MCP-1, and TNF-α when applied at the same time as irradiation. EA showed milder effects compared with RA, except for TNF-α. Both substances decreased IL-6 expression, also when applied 5 h after irradiation, and always produced a significant increase in UVB-induced IL-10 expression. Our findings suggest that EA and RA are able to prevent and/or limit the UVB-induced inflammatory cascade, through a reduction in proinflammatory mediators and the enhancement of IL-10, with its protective function

    Calibrating accelerometer tags with oxygen consumption rate of rainbow trout (Oncorhynchus mykiss) and their use in aquaculture facility: A case study

    Get PDF
    SIMPLE SUMMARY: Measuring metabolic rates in free-swimming fish would provide valuable insights about the energetic costs of different life activities this is challenging to implement in the field due to the difficulty of performing such measurements. Thus, the calibration of acoustic transmitters with the oxygen consumption rate (MO(2)) could be promising to counter the limitations observed in the field. In this study, calibrations were performed in rainbow trout (Oncorhynchus mykiss), and a subsample of fish was implanted with such a transmitter and then followed under aquaculture conditions. The use of acoustic transmitters calibrated with MO(2) appeared to be a promising tool to estimate energetic costs in free-swimming rainbow trout, and for welfare assessment in the aquaculture industry. ABSTRACT: Metabolic rates are linked to the energetic costs of different activities of an animal’s life. However, measuring the metabolic rate in free-swimming fish remains challenging due to the lack of possibilities to perform these direct measurements in the field. Thus, the calibration of acoustic transmitters with the oxygen consumption rate (MO(2)) could be promising to counter these limitations. In this study, rainbow trout (Oncorhynchus mykiss Walbaum, 1792; n = 40) were challenged in a critical swimming test (U(crit)) to (1) obtain insights about the aerobic and anaerobic metabolism throughout electromyograms; and (2) calibrate acoustic transmitters’ signal with the MO(2) to be later used as a proxy of energetic costs. After this calibration, the fish (n = 12) were implanted with the transmitter and were followed during ~50 days in an aquaculture facility, as a case study, to evaluate the potential of such calibration. Accelerometer data gathered from tags over a long time period were converted to estimate the MO(2). The MO(2) values indicated that all fish were reared under conditions that did not impact their health and welfare. In addition, a diurnal pattern with higher MO(2) was observed for the majority of implanted trout. In conclusion, this study provides (1) biological information about the muscular activation pattern of both red and white muscle; and (2) useful tools to estimate the energetic costs in free-ranging rainbow trout. The use of acoustic transmitters calibrated with MO(2), as a proxy of energy expenditure, could be promising for welfare assessment in the aquaculture industry

    One health research in Northern Tanzania – challenges and progress

    Get PDF
    East Africa has one of the world’s fastest growing human populations—many of whom are dependent on livestock—as well as some of the world’s largest wildlife populations. Humans, livestock, and wildlife often interact closely, intimately linking human, animal, and environmental health. The concept of One Health captures this interconnectedness, including the social structures and beliefs driving interactions between species and their environments. East African policymakers and researchers are recognising and encouraging One Health research, with both groups increasingly playing a leading role in this subject area. One Health research requires interaction between scientists from different disciplines, such as the biological and social sciences and human and veterinary medicine. Different disciplines draw on norms, methodologies, and terminologies that have evolved within their respective institutions and that may be distinct from or in conflict with one another. These differences impact interdisciplinary research, both around theoretical and methodological approaches and during project operationalisation. We present experiential knowledge gained from numerous ongoing projects in northern Tanzania, including those dealing with bacterial zoonoses associated with febrile illness, foodborne disease, and anthrax. We use the examples to illustrate differences between and within social and biological sciences and between industrialised and traditional societies, for example, with regard to consenting procedures or the ethical treatment of animals. We describe challenges encountered in ethical approval processes, consenting procedures, and field and laboratory logistics and offer suggestions for improvement. While considerable investment of time in sensitisation, communication, and collaboration is needed to overcome interdisciplinary challenges inherent in One Health research, this can yield great rewards in paving the way for successful implementation of One Health projects. Furthermore, continued investment in African institutions and scientists will strengthen the role of East Africa as a world leader in One Health research

    Asynchronous food-web pathways could buffer the response of Serengeti predators to El Niño southern oscillation

    Get PDF
    Understanding how entire ecosystems maintain stability in the face of climatic and human disturbance is one of the most fundamental challenges in ecology. Theory suggests that a crucial factor determining the degree of ecosystem stability is simply the degree of synchrony with which different species in ecological food webs respond to environmental stochasticity. Ecosystems in which all food-web pathways are affected similarly by external disturbance should amplify variability in top carnivore abundance over time due to population interactions, whereas ecosystems in which a large fraction of pathways are nonresponsive or even inversely responsive to external disturbance will have more constant levels of abundance at upper trophic levels. To test the mechanism underlying this hypothesis, we used over half a century of demographic data for multiple species in the Serengeti (Tanzania) ecosystem to measure the degree of synchrony to variation imposed by an external environmental driver, the El Niño Southern Oscillation (ENSO). ENSO effects were mediated largely via changes in dry-season vs. wet-season rainfall and consequent changes in vegetation availability, propagating via bottom-up effects to higher levels of the Serengeti food web to influence herbivores, predators and parasites. Some species in the Serengeti food web responded to the influence of ENSO in opposite ways, whereas other species were insensitive to variation in ENSO. Although far from conclusive, our results suggest that a diffuse mixture of herbivore responses could help buffer top carnivores, such as Serengeti lions, from variability in climate. Future global climate changes that favor some pathways over others, however, could alter the effectiveness of such processes in the future
    • 

    corecore