2,092 research outputs found
Hybridization-induced superconductivity from the electron repulsion on a tetramer lattice having a disconnected Fermi surface
Plaquette lattices with each unit cell containing multiple atoms are good
candidates for disconnected Fermi surfaces, which are shown by Kuroki and Arita
to be favorable for spin-flucutation mediated superconductivity from electron
repulsion. Here we find an interesting example in a tetramer lattice where the
structure within each unit cell dominates the nodal structure of the gap
function. We trace its reason to the way in which a Cooper pair is formed
across the hybridized molecular orbitals, where we still end up with a T_c much
higher than usual.Comment: 4 pages, 6 figure
High temperature superconductivity in dimer array systems
Superconductivity in the Hubbard model is studied on a series of lattices in
which dimers are coupled in various types of arrays. Using fluctuation exchange
method and solving the linearized Eliashberg equation, the transition
temperature of these systems is estimated to be much higher than that of
the Hubbard model on a simple square lattice, which is a model for the high
cuprates. We conclude that these `dimer array' systems can generally
exhibit superconductivity with very high . Not only -electron systems,
but also -electron systems may provide various stages for realizing the
present mechanism.Comment: 4 pages, 9 figure
Dynamical Generation of Non-Abelian Gauge Group via the Improved Perturbation Theory
It was suggested that the massive Yang-Mills-Chern-Simons matrix model has
three phases and that in one of them a non-Abelian gauge symmetry is
dynamically generated. The analysis was at the one-loop level around a
classical solution of fuzzy sphere type. We obtain evidences that three phases
are indeed realized as nonperturbative vacua by using the improved perturbation
theory. It also gives a good example that even if we start from a trivial
vacuum, the improved perturbation theory around it enables us to observe
nontrivial vacua.Comment: 31 pages, published versio
A Mechanism of Spin-Triplet Superconductivity in Hubbard Model on Triangular La ttice: Application to UNi_2Al_3
We discuss the possibility of spin-triplet superconductivity in a
two-dimensional Hubbard model on a triangular lattice within the third-order
perturbation theory. When we vary the symmetry in the dispersion of the bare
energy band from D_2 to D_6, spin-singlet superconductivity in the
D_2-symmetric system is suppressed and we obtain spin-triplet superconductivity
in near the D_6-symmetric system. In this case, it is found that the vertex
terms, which are not included in the interaction mediated by the spin
fluctuation, are essential for realizing the spin-triplet pairing. We point out
the possibility that obtained results correspond to the difference between the
superconductivity of UNi_2Al_3 and that of UPd_2Al_3.Comment: 11pages, 5figure
Electronic states and pairing symmetry in the two-dimensional 16 band d-p model for iron-based superconductor
The electronic states of the FeAs plane in iron-based superconductors are
investigated on the basis of the two-dimensional 16-band d-p model, where the
tight-binding parameters are determined so as to fit the band structure
obtained by the density functional calculation for LaFeAsO. The model includes
the Coulomb interaction on a Fe site: the intra- and inter-orbital direct terms
U and U', the exchange coupling J and the pair-transfer J'. Within the random
phase approximation (RPA), we discuss the pairing symmetry of possible
superconducting states including s-wave and d-wave pairing on the U'-J plane.Comment: 2 pages, 4 figures; Proceedings of the Int. Symposium on
Fe-Oxipnictide Superconductors (Tokyo, 28-29th June 2008
Nuclear Magnetic Relaxation Rate in Iron-Pnictide Superconductors
Nuclear magnetic relaxation rate 1/T_1 in iron-pnictide superconductors is
calculated using the gap function obtained in a microscopic calculation. Based
on the obtained results, we discuss the issues such as the rapid decrease of
1/T_1 just below the transition temperature and the difference between nodeless
and nodal s-wave gap functions. We also investigate the effect of Coulomb
interaction on 1/T_1 in the random phase approximation and show its importance
in interpreting the experimental results.Comment: Proceedings of 9th International Conference on Materials and
Mechanisms of Superconductivity. To be published in Physica
- …