47 research outputs found

    What? So What? Now What? Student Reflections on IPE and Collaborative Practice

    Get PDF
    Outline Background • Description of Health Mentors Program (HMP) • Purpose of Study Methods • Description of Analysis Results • Themes and Sub-themes Conclusion

    Acinetobacter baumannii in intensive care unit: A novel system to study clonal relationship among the isolates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nosocomial infections surveillance system must be strongly effective especially in highly critic areas, such as Intensive Care Units (ICU). These areas are frequently an epidemiological epicentre for transmission of multi-resistant pathogens, like <it>Acinetobacter baumannii</it>. As an epidemic outbreak occurs it is very important to confirm or exclude the genetic relationship among the isolates in a short time. There are several molecular typing systems used with this aim. The Repetitive sequence-based PCR (REP-PCR) has been recognized as an effective method and it was recently adapted to an automated format known as the DiversiLab system.</p> <p>Methods</p> <p>In the present study we have evaluated the combination of a newly introduced software package for the control of hospital infection (VIGI@ct) with the DiversiLab system. In order to evaluate the reliability of the DiversiLab its results were also compared with those obtained using f-AFLP.</p> <p>Results</p> <p>The combination of VIGI@ct and DiversiLab enabled an earlier identification of an <it>A. baumannii </it>epidemic cluster, through the confirmation of the genetic relationship among the isolates. This cluster regards 56 multi-drug-resistant <it>A. baumannii </it>isolates from several specimens collected from 13 different patients admitted to the ICU in a ten month period. The <it>A. baumannii </it>isolates were clonally related being their similarity included between 97 and 100%. The results of the DiversiLab were confirmed by f-AFLP analysis.</p> <p>Conclusion</p> <p>The early identification of the outbreak has led to the prompt application of operative procedures and precautions to avoid the spread of pathogen. To date, 6 months after the last <it>A. baumannii </it>isolate, no other related case has been identified.</p

    Whole-cell repetitive element sequence-based polymerase chain reaction allows rapid assessment of clonal relationships of bacterial isolates.

    No full text
    Repetitive element sequence-based polymerase chain reaction (rep-PCR) enables the generation of DNA fingerprints which discriminate bacterial species and strains. We describe the application of whole-cell methods which allow specimens from broth cultures or colonies from agar plates to be utilized directly in the PCR mixture. The rep-PCR-generated DNA fingerprints obtained with whole-cell samples match results obtained with genomic DNA templates. Examples with different gram-negative bacteria (e.g., Citrobacter diversus, Escherichia coli, and Pseudomonas aeruginosa) and gram-positive bacteria (e.g., Staphylococcus aureus and Streptococcus pneumoniae) are demonstrated. Rapid specimen preparation methods enable rep-PCR-based fingerprinting to be completed in several hours and, therefore, allows the timely analysis of epidemiological relationships
    corecore