3,445 research outputs found

    Program computes equilibrium normal shock and stagnation point solutions for arbitrary gas mixtures

    Get PDF
    Program computes solutions for flow parameters in arbitrary gas mixtures behind a normal and a reflected normal shock, for in-flight and shock-tube stagnation conditions. Equilibrium flow calculations are made by a free-energy minimization technique coupled with the steady-flow conservation equations and a modified Newton-Raphson iterative scheme

    Lightcone renormalization and quantum quenches in one-dimensional Hubbard models

    Full text link
    The Lieb-Robinson bound implies that the unitary time evolution of an operator can be restricted to an effective light cone for any Hamiltonian with short-range interactions. Here we present a very efficient renormalization group algorithm based on this light cone structure to study the time evolution of prepared initial states in the thermodynamic limit in one-dimensional quantum systems. The algorithm does not require translational invariance and allows for an easy implementation of local conservation laws. We use the algorithm to investigate the relaxation dynamics of double occupancies in fermionic Hubbard models as well as a possible thermalization. For the integrable Hubbard model we find a pure power-law decay of the number of doubly occupied sites towards the value in the long-time limit while the decay becomes exponential when adding a nearest neighbor interaction. In accordance with the eigenstate thermalization hypothesis, the long-time limit is reasonably well described by a thermal average. We point out though that such a description naturally requires the use of negative temperatures. Finally, we study a doublon impurity in a N\'eel background and find that the excess charge and spin spread at different velocities, providing an example of spin-charge separation in a highly excited state.Comment: published versio

    A method for computing chemical-equilibrium compositions of reacting-gas mixtures by reduction to a single iteration equation

    Get PDF
    Computing equilibrium chemical composition and thermodynamic properties of reacting gas mixtures by reduction to single iterative equatio

    Tunneling spectroscopy for probing orbital anisotropy in iron pnictides

    Full text link
    Using realistic multi-orbital tight-binding Hamiltonians and the T-matrix formalism, we explore the effects of a non-magnetic impurity on the local density of states in Fe-based compounds. We show that scanning tunneling spectroscopy (STS) has very specific anisotropic signatures that track the evolution of orbital splitting (OS) and antiferromagnetic gaps. Both anisotropies exhibit two patterns that split in energy with decreasing temperature, but for OS these two patterns map onto each other under 90 degree rotation. STS experiments that observe these signatures should expose the underlying magnetic and orbital order as a function of temperature across various phase transitions.Comment: 12 pages, 9 figures, replacement with minor changes suggested by referee

    DWBA analysis of the 13C(6Li,d)17O reaction at 10 MeV/nucleon and its astrophysical implications

    Full text link
    The value of the alpha spectroscopic factor (S_alpha) of the 6.356 MeV 1/2+ state of 17O is believed to have significant astrophysical implications due to the importance of the 13C(alpha,n)16O reaction as a possible source of neutron production for the s process. To further study this effect, an accurate measurement of the 13C(6Li,d)17O reaction at E_lab = 60 MeV has been performed recently by Kubono et al., who found a new value for the spectroscopic factor of the 6.356 MeV 1/2+ state of 17O based on a distorted wave Born approximation (DWBA) analysis of these data. This new value, S_alpha approximately = 0.011, is surprisingly much smaller than those used previously in astrophysical calculations (S_alpha approximately = 0.3-0.7) and thus poses a serious question as to the role of the 13C(alpha,n)16O reaction as a source of neutron production. In this work we perform a detailed analysis of the same 13C(6Li,d)17O data within the DWBA as well as the coupled reaction channel (CRC) formalism. Our analysis yields an S_alpha value of over an order of magnitude larger than that of Kubono et al. for the 6.356 MeV 1/2+ state of 17O.Comment: 17 pages, 4 figures, minor changes, accepted by Nuclear Physics
    • …
    corecore