294 research outputs found
Why national health research systems matter
Some of the most outstanding problems in Computer Science (e.g. access to heterogeneous information sources, use of different e-commerce standards, ontology translation, etc.) are often approached through the identification of ontology mappings. A manual mapping generation slows down, or even makes unfeasible, the solution of particular cases of the aforementioned problems via ontology mappings. Some algorithms and formal models for partial tasks of automatic generation of mappings have been proposed. However, an integrated system to solve this problem is still missing. In this paper, we present AMON, a platform for automatic ontology mapping generation. First of all, we show the general structure. Then, we describe the current version of the system, including the ontology in which it is based, the similarity measures that it uses, the access to external sources, etc
Observation of a Triangular to Square Flux Lattice Phase Transition in YBCO
We have used the technique of small-angle neutron scattering to observe
magnetic flux lines directly in an YBCO single crystal at fields higher than
previously reported. For field directions close to perpendicular to the CuO2
planes, we find that the flux lattice structure changes smoothly from a
distorted triangular co-ordination to nearly perfectly square as the magnetic
induction approaches 11 T. The orientation of the square flux lattice is as
expected from recent d-wave theories, but is 45 deg from that recently observed
in LSCO
Phenomenological theory of the 3 Kelvin phase in Sr2RuO4
We model the 3K-phase of Sr2RuO4 with Ru-metal inclusion as interface state
with locally enhanced transition temperatures. The resulting 3K-phase must have
a different pairing symmetry than the bulk phase of Sr2RuO4, because the
symmetry at the interface is lower than in the bulk. It is invariant under time
reversal and a second transition, in general, above the onset of bulk
superconductivity is expected where time reversal symmetry is broken. The
nucleation of the 3K-phase exhibits a ``capillary effect'' which can lead to
frustration phenomena for the superconducting states on different
Ru-inclusions. Furthermore, the phase structure of the pair wave function gives
rise to zero-energy quasiparticle states which would be visible in
quasiparticle tunneling spectra. Additional characteristic properties are
associated with the upper critical field Hc2. The 3K-phase has a weaker
anisotropy of Hc2 between the inplane and z-axis orientation than the bulk
superconducting phase. This is connected with the more isotropic nature
Ru-metal which yields a stronger orbital depairing effect for the inplane
magnetic field than in the strongly layered Sr$_2RuO4. An anomalous temperature
dependence for the z-axis critical field is found due to the coupling of the
magnetic field to the order parameter texture at the interface. Various other
experiments are discussed and new measurements are suggested.Comment: 10 pages, 5 figure
Interface superconductivity in the eutectic Sr2RuO4-Ru: 3-K phase of Sr2RuO4
The eutectic system Sr2RuO4-Ru is referred to as the 3-K phase of the
spin-triplet supeconductor Sr2RuO4 because of its enhanced superconducting
transition temperature Tc of ~3 K. We have investigated the field-temperature
(H-T) phase diagram of the 3-K phase for fields parallel and perpendicular to
the ab-plane of Sr2RuO4, using out-of-plane resistivity measurements. We have
found an upturn curvature in the Hc2(T) curve for H // c, and a rather gradual
temperature dependence of Hc2 close to Tc for both H // ab and H // c. We have
also investigated the dependence of Hc2 on the angle between the field and the
ab-plane at several temperatures. Fitting the Ginzburg-Landau effective-mass
model apparently fails to reproduce the angle dependence, particularly near H
// c and at low temperatures. We propose that all of these charecteric features
can be explained, at least in a qualitative fashion, on the basis of a theory
by Sigrist and Monien that assumes surface superconductivity with a
two-component order parameter occurring at the interface between Sr2RuO4 and Ru
inclusions. This provides evidence of the chiral state postulated for the 1.5-K
phase by several experiments.Comment: 7 pages and 5 figs; accepted for publication in Phys. Rev.
Detailed study of the ac susceptibility of Sr2RuO4 in oriented magnetic fields
We have investigated the ac susceptibility of the spin triplet superconductor
SrRuO as a function of magnetic field in various directions at
temperatures down to 60 mK. We have focused on the in-plane field configuration
(polar angle ), which is a prerequisite for inducing
multiple superconducting phases in SrRuO. We have found that the
previous attribution of a pronounced feature in the ac susceptibility to the
second superconducting transition itself is not in accord with recent
measurements of the thermal conductivity or of the specific heat. We propose
that the pronounced feature is a consequence of additional involvement of
vortex pinning originating from the second superconducting transition.Comment: Accepted for publication in Phys. Rev.
Low temperature electronic properties of Sr_2RuO_4 III: Magnetic fields
Based on the microscopic model introduced previously the observed specific
heat and ac-susceptibility data in the superconducting phase in Sr_2RuO_4 with
applied magnetic fields are described consistently within a phenomenological
approach. Discussed in detail are the temperature dependence of the upper
critical fields H_{c2} and H_2, the dependence of the upper critical fields on
the field direction, the linear specific heat below the superconducting phase
transition as a function of field or temperature, the anisotropy of the two
spatial components of the order parameter, and the fluctuation field H_p.Comment: 8 pages REVTEX, 4 figure
- …