391 research outputs found

    Intermodal attention shifts in multimodal working memory

    Get PDF
    Attention maintains task-relevant information in working memory (WM) in an active state. We investigated whether the attention-based maintenance of stimulus representations that were encoded through different modalities is flexibly controlled by top-down mechanisms that depend on behavioral goals. Distinct components of the ERP reflect the maintenance of tactile and visual information in WM. We concurrently measured tactile (tCDA) and visual contralateral delay activity (CDA) to track the attentional activation of tactile and visual information during multimodal WM. Participants simultaneously received tactile and visual sample stimuli on the left and right sides and memorized all stimuli on one task-relevant side. After 500 msec, an auditory retrocue indicated whether the sample set's tactile or visual content had to be compared with a subsequent test stimulus set. tCDA and CDA components that emerged simultaneously during the encoding phase were consistently reduced after retrocues that marked the corresponding (tactile or visual) modality as task-irrelevant. The absolute size of cue-dependent modulations was similar for the tCDA/CDA components and did not depend on the number of tactile/visual stimuli that were initially encoded into WM. Our results suggest that modality-specific maintenance processes in sensory brain regions are flexibly modulated by top-down influences that optimize multimodal WM representations for behavioral goals

    Nucleoside diphosphate kinase B is required for the formation of heterotrimeric G protein containing caveolae.

    Get PDF
    Caveolae are flask-shaped invaginations in the plasma membrane that serve to compartmentalize and organize signal transduction processes, including signals mediated by G protein-coupled receptors and heterotrimeric G proteins. Herein we report evidence for a close association of the nucleoside diphosphate kinase B (NDPK B) and caveolin proteins which is required for G protein scaffolding and caveolae formation. A concomitant loss of the proteins NDPK B, caveolin isoforms 1 (Cav1) and 3, and heterotrimeric G proteins occurred when one of these proteins was specifically depleted in zebrafish embryos. Co-immunoprecipitation of Cav1 with the G protein GÎČ-subunit and NDPK B from zebrafish lysates corroborated the direct association of these proteins. Similarly, in embryonic fibroblasts from the respective knockout (KO) mice, the membrane content of the Cav1, GÎČ, and NDPK B was found to be mutually dependent on one another. A redistribution of Cav1 and GÎČ from the caveolae containing fractions of lower density to other membrane compartments with higher density could be detected by means of density gradient fractionation of membranes derived from NDPK A/B KO mouse embryonic fibroblasts (MEFs) and after shRNA-mediated NDPK B knockdown in H10 cardiomyocytes. This redistribution could be visualized by confocal microscopy analysis showing a decrease in the plasma membrane bound Cav1 in NDPK A/B KO cells and vice versa and a decrease in the plasma membrane pool of NDPK B in Cav1 KO cells. Consequently, ultrastructural analysis revealed a reduction of surface caveolae in the NDPK A/B KO cells. To prove that the disturbed subcellular localization of Cav1 in NDPK A/B KO MEFs as well as NDPK B in Cav1 KO MEFs is a result of the loss of NDPK B and Cav1, respectively, we performed rescue experiments. The adenoviral re-expression of NDPK B in NDPK A/B KO MEFs rescued the protein content and the plasma membrane localization of Cav1. The expression of an EGFP-Cav1 fusion protein in Cav1-KO cells induced a restoration of NDPK B expression levels and its appearance at the plasma membrane. We conclude from these findings that NDPK B, heterotrimeric G proteins, and caveolins are mutually dependent on each other for stabile localization and caveolae formation at the plasma membrane. The data point to a disturbed transport of caveolin/G protein/NDPK B complexes from intracellular membrane compartments if one of the components is missing

    Prediction of coronary artery disease by a systemic atherosclerosis score index derived from whole-body MR angiography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Whole-body magnetic resonance angiography (WB-MRA) has shown its potential for the non-invasive assessment of nearly the entire arterial vasculature within one examination. Since the presence of extra-cardiac atherosclerosis is associated with an increased risk of coronary events, our goal was to establish the relationship between WB-MRA findings, including a systemic atherosclerosis score index, and the presence of significant coronary artery disease (CAD).</p> <p>Methods</p> <p>WB-MRA was performed on a 1.5T scanner in 50 patients scheduled to undergo elective cardiac catheterization for suspected CAD. In each patient, 40 extra-cardiac vessel segments were evaluated and assigned scores according to their luminal narrowing. The atherosclerosis score index (ASI) was generated as the ratio of summed scores to analyzable segments.</p> <p>Results</p> <p>ASI was higher in patients with significant (> 50% stenosis) CAD (n = 27) vs. patients without CAD (n = 22; 1.56 vs. 1.28, p = 0.004). ASI correlated with PROCAM (R = 0.57, p < 0.001) and Framingham (R = 0.36, p = 0.01) risk scores as estimates of the 10-year risk of coronary events. A ROC derived ASI of > 1.54 predicted significant CAD with a sensitivity of 59%, specificity of 86% and a positive predictive value of 84%. Logistic regression revealed ASI > 1.54 as the strongest independent predictor for CAD with a 11-fold increase in likelihood to suffer from significant coronary disease. On the contrary, while 15/27 (55%) of patients with CAD exhibited at least one extra-cardiac stenosis > 50%, only 3/22 (14%) of those patients without CAD did (p = 0.003). The likelihood for an extra-cardiac stenosis when CAD is present differed between vascular territories and ranged from 15% for a carotid stenosis to 44% for a stenosis in the lower extremities.</p> <p>Conclusion</p> <p>This study provides important new evidence for the close association of extra-cardiac and coronary atherosclerosis. The novel findings that a WB-MRA derived systemic atherosclerosis score index is not only associated with established cardiovascular risk scores but is also predictive of significant CAD suggest its potential prognostic implications and underline the importance to screen for coronary disease in patients with extra-cardiac manifestations of atherosclerosis.</p

    Geomagnetic disturbance intensity dependence on the universal timing of the storm peak

    Full text link
    The role of universal time (UT) dependence on storm time development has remained an unresolved question in geospace research. This study presents new insight into storm progression in terms of the UT of the storm peak. We present a superposed epoch analysis of solar wind drivers and geomagnetic index responses during magnetic storms, categorized as a function of UT of the storm peak, to investigate the dependency of storm intensity on UT. Storms with Dst minimum less than −100 nT were identified in the 1970–2012 era (305 events), covering four solar cycles. The storms were classified into six groups based on the UT of the minimum Dst (40 to 61 events per bin) then each grouping was superposed on a timeline that aligns the time of the minimum Dst. Fifteen different quantities were considered: seven solar wind parameters and eight activity indices derived from ground‐based magnetometer data. Statistical analyses of the superposed means against each other (between the different UT groupings) were conducted to determine the mathematical significance of similarities and differences in the time series plots. It was found that the solar wind parameters have no significant difference between the UT groupings, as expected. The geomagnetic activity indices, however, all show statistically significant differences with UT during the main phase and/or early recovery phase. Specifically, the 02:00 UT groupings are stronger storms than those in the other UT bins. That is, storms are stronger when the Asian sector is on the nightside (American sector on the dayside) during the main phase.Key PointsWe statistically examine storm time solar wind and geophysical data as a function of UT of the storm peakThere is a significant UT dependence to large storms; larger storms occur with a peak near 02:00 UTThe difference in storm magnitude is caused by substorm activity and not by solar wind drivingPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134203/1/jgra52755.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134203/2/jgra52755_am.pd

    Re‐do MitraClip in patients with functional mitral valve regurgitation and advanced heart failure

    Get PDF
    AIM: Percutaneous mitral valve repair (PMVR) via MitraClip implantation is a therapeutic option for severe mitral regurgitation (MR) in advanced stages of heart failure (HF). However, progressive left ventricular dilation in these patients may lead to recurrent MR after PMVR and consequent re‐do MitraClip implantation. Here, we describe the characteristics and outcomes of this clinical scenario. METHODS AND RESULTS: Patients with systolic HF and functional MR undergoing a re‐do MitraClip procedure were retrospectively analysed. Inclusion criteria were age ≄18 years, technical, device and procedural success at first MitraClip procedure, functional MR and systolic HF with an ejection fraction (EF) of <45%. Seventeen out of 684 patients undergoing PMVR with the MitraClip device at our institution between September 2009 and July 2019 were included. All patients displayed advanced HF with an EF of 20% (±9.9) and highly elevated N‐terminal pro‐brain natriuretic peptide. Technical success of the re‐do MitraClip procedure was 100%, whereas procedural and device success were only achieved in 11 patients (65%). Unsuccessful re‐do procedures were related to lower EF and implantation of more than one clip at initial procedure. However, despite reduction in MR grade and no occurrence of significant mitral stenosis after the procedure, the mortality during 12 months follow‐up remained high (8 of 17; 47%). CONCLUSIONS: In a cohort of patients with advanced HF undergoing PMVR, re‐do MitraClip procedure was feasible, but procedural success was unsatisfactory and morbidity and mortality remained high, possibly reflecting the advanced stage of HF in these patients

    Rosuvastatin reduces neointima formation in a rat model of balloon injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Processes of restenosis, following arterial injury, are complex involving different cell types producing various cytokines and enzymes. Among those enzymes, smooth muscle cell-derived matrix metalloproteinases (MMPs) are thought to take part in cell migration, degrading of extracellular matrix, and neointima formation. MMP-9, also known as gelatinase B, is expressed immediately after vascular injury and its expression and activity can be inhibited by statins. Using an established in vivo model of vascular injury, we investigated the effect of the HMG-CoA reductase inhibitor rosuvastatin on MMP-9 expression and neointima formation.</p> <p>Materials and methods</p> <p>14-week old male Sprague Dawley rats underwent balloon injury of the common carotid artery. Half of the animals received rosuvastatin (20 mg/kg body weight/day) via oral gavage, beginning 3 days prior to injury. Gelatinase activity and neointima formation were analyzed 3 days and 14 days after balloon injury, respectively. 14 days after vascular injury, proliferative activity was assessed by staining for Ki67.</p> <p>Results</p> <p>After 14 days, animals in the rosuvastatin group showed a decrease in total neointima formation (0.194 ± 0.01 mm<sup>2 </sup>versus 0.124 ± 0.02 mm<sup>2</sup>, p < 0.05) as well as a reduced intima/media ratio (1.26 ± 0.1 versus 0.75 ± 0.09, p < 0.05). Balloon injury resulted in increased activity of MMP-9 3 days after intervention for both rosuvastatin treated animals and controls with no significant difference observed between the groups. There was a trend towards a reduction in the number of Ki67-positive cells 14 days after injury.</p> <p>Conclusions</p> <p>Rosuvastatin attenuates neointima formation without affecting early MMP-9 activity in a rat model of vascular injury.</p
    • 

    corecore