35 research outputs found

    Purification and characterisation of the yeast plasma membrane ATP binding cassette transporter Pdr11p.

    Get PDF
    The ATP binding cassette (ABC) transporters Pdr11p and its paralog Aus1p are expressed under anaerobic growth conditions at the plasma membrane of the yeast Saccharomyces cerevisiae and are required for sterol uptake. However, the precise mechanism by which these ABC transporters facilitate sterol movement is unknown. In this study, an overexpression and purification procedure was developed with the aim to characterise the Pdr11p transporter. Engineering of Pdr11p variants fused at the C terminus with green fluorescent protein (Pdr11p-GFP) and containing a FLAG tag at the N terminus facilitated expression analysis and one-step purification, respectively. The detergent-solubilised and purified protein displayed a stable ATPase activity with a broad pH optimum near 7.4. Mutagenesis of the conserved lysine to methionine (K788M) in the Walker A motif abolished ATP hydrolysis. Remarkably, and in contrast to Aus1p, ATPase activity of Pdr11p was insensitive to orthovanadate and not specifically stimulated by phosphatidylserine upon reconstitution into liposomes. Our results highlight distinct differences between Pdr11p and Aus1p and create an experimental basis for further biochemical studies of both ABC transporters to elucidate their function

    Protein kinase Ymr291w/Tda1 is essential for glucose signaling in Saccharomyces cerevisiae on the level of hexokinase isoenzyme ScHxk2 phosphorylation

    Get PDF
    The enzyme ScHxk2 of Saccharomyces cerevisiae is a dual-function hexokinase that besides its catalytic role in glycolysis is involved in the transcriptional regulation of glucose-repressible genes. Relief from glucose repression is accompanied by the phosphorylation of the nuclear fraction of ScHxk2 at serine 15 and the translocation of the phosphoenzyme into the cytosol. Different studies suggest different serine/threonine protein kinases, Ymr291w/Tda1 or Snf1, to accomplish ScHxk2-S15 phosphorylation. The current paper provides evidence that Ymr291w/Tda1 is essential for that modification while protein kinases Ydr477w/Snf1, Ynl307c/Mck1, Yfr014c/Cmk1 and Ykl126w/Ypk1, which co-purified during Ymr291w/Tda1 tandem affinity purification, as well as protein kinases PKA and PKB homolog Sch9 are dispensable. Taking into account the detection of a significantly higher amount of the Ymr291w/Tda1 protein in cells grown in low-glucose media as compared to a high-glucose environment, Ymr291w/Tda1 is likely to contribute to glucose signaling in Saccharomyces cerevisiae on the level of ScHxk2-S15 phosphorylation in a situation of limited external glucose availability. The evolutionary conservation of amino acid residue serine 15 in yeast hexokinases and its phosphorylation is illustrated by the finding that YMR291W/TDA1 of Saccharomyces cerevisiae and the homologous KLLA0A09713 gene of Kluyveromyces lactis allow for cross-complementation of the respective protein kinase single-gene deletion strains

    Pairwise stimulations of pathogen-sensing pathways predict immune responses to multi-adjuvant combinations

    Get PDF
    The immune system makes decisions in response to combinations of multiple microbial inputs. We do not understand the combinatorial logic governing how higher-order combinations of microbial signals shape immune responses. Here, using coculture experiments and statistical analyses, we discover a general property for the combinatorial sensing of microbial signals, whereby the effects of triplet combinations of microbial signals on immune responses can be predicted by combining the effects of single and pairs. Mechanistically, we find that singles and pairs dictate the information signaled by triplets in mouse and human DCs at the levels of transcription, chromatin, and protein secretion. We exploit this simplifying property to develop cell-based immunotherapies prepared with adjuvant combinations that trigger protective responses in mouse models of cancer. We conclude that the processing of multiple input signals by innate immune cells is governed by pairwise effects, which will inform the rationale combination of adjuvants to manipulate immunity

    Muscle RING-finger 2 and 3 maintain striated-muscle structure and function

    Get PDF
    Background: The Muscle-specific RING-finger (MuRF) protein family of E3 ubiquitin ligases is important for maintenance of muscular structure and function. MuRF proteins mediate adaptation of striated muscles to stress. MuRF2 and MuRF3 bind to microtubules and are implicated in sarcomere formation with noticeable functional redundancy. However, if this redundancy is important for muscle function in vivo is unknown. Our objective was to investigate cooperative function of MuRF2 and MuRF3 in the skeletal muscle and the heart in vivo. Methods: MuRF2 and MuRF3 double knockout mice (DKO) were generated and phenotypically characterized. Skeletal muscle and the heart were investigated by morphological measurements, histological analyses, electron microscopy, immunoblotting, and real-time PCR. Isolated muscles were subjected to in vitro force measurements. Cardiac function was determined by echocardiography and working heart preparations. Function of cardiomyocytes was measured in vitro. Cell culture experiments and mass-spectrometry were used for mechanistic analyses. Results: DKO mice showed a protein aggregate myopathy in skeletal muscle. Maximal force development was reduced in DKO soleus and extensor digitorum longus. Additionally, a fibre type shift towards slow/type I fibres occurred in DKO soleus and extensor digitorum longus. MuRF2 and MuRF3-deficient hearts showed decreased systolic and diastolic function. Further analyses revealed an increased expression of the myosin heavy chain isoform beta/slow and disturbed calcium handling as potential causes for the phenotype in DKO hearts. Conclusions: The redundant function of MuRF2 and MuRF3 is important for maintenance of skeletal muscle and cardiac structure and function in vivo

    Stable isotope-assisted untargeted metabolomics identifies ALDH1A1-driven erythronate accumulation in lung cancer cells

    Get PDF
    Using an untargeted stable isotope-assisted metabolomics approach, we identify erythronate as a metabolite that accumulates in several human cancer cell lines. Erythronate has been reported to be a detoxification product derived from off-target glycolytic metabolism. We use chemical inhibitors and genetic silencing to define the pentose phosphate pathway intermediate erythrose 4-phosphate (E4P) as the starting substrate for erythronate production. However, following enzyme assay-coupled protein fractionation and subsequent proteomics analysis, we identify aldehyde dehydrogenase 1A1 (ALDH1A1) as the predominant contributor to erythrose oxidation to erythronate in cell extracts. Through modulating ALDH1A1 expression in cancer cell lines, we provide additional support. We hence describe a possible alternative route to erythronate production involving the dephosphorylation of E4P to form erythrose, followed by its oxidation by ALDH1A1. Finally, we measure increased erythronate concentrations in tumors relative to adjacent normal tissues from lung cancer patients. These findings suggest the accumulation of erythronate to be an example of metabolic reprogramming in cancer cells, raising the possibility that elevated levels of erythronate may serve as a biomarker of certain types of cancer

    Patient-derived xenograft (PDX) models of colorectal carcinoma (CRC) as a platform for chemosensitivity and biomarker analysis in personalized medicine

    Get PDF
    Patient-derived xenograft (PDX) tumor models represent a valuable platform for identifying new biomarkers and novel targets, to evaluate therapy response and resistance mechanisms. This study aimed at establishment, characterization and therapy testing of colorectal carcinoma-derived PDX. We generated 49 PDX and validated identity between patient tumor and corresponding PDX. Sensitivity of PDX toward conventional and targeted drugs revealed that 92% of PDX responded toward irinotecan, 45% toward 5-FU, 65% toward bevacizumab, and 61% toward cetuximab. Expression of epidermal growth factor receptor (EGFR) ligands correlated to the sensitivity toward cetuximab. Proto-oncogene B-RAF, EGFR, Kirsten rat sarcoma virus oncogene homolog gene copy number correlated positively with cetuximab and erlotinib sensitivity. The mutational analyses revealed an individual mutational profile of PDX and mainly identical profiles of PDX from primary tumor vs corresponding metastasis. Mutation in PIK3CA was a determinant of accelerated tumor doubling time. PDX with wildtype Kirsten rat sarcoma virus oncogene homolog, proto-oncogene B-RAF, and phosphatidylinositol-4,5-bisphosphate 3-kinaseM catalytic subunit alfa showed higher sensitivity toward cetuximab and erlotinib. To study the molecular mechanism of cetuximab resistance, cetuximab resistant PDX models were generated, and changes in HER2, HER3, betacellulin, transforming growth factor alfa were observed. Global proteome and phosphoproteome profiling showed a reduction in canonical EGFR-mediated signaling via PTPN11 (SHP2) and AKT1S1 (PRAS40) and an increase in anti-apoptotic signaling as a consequence of acquired cetuximab resistance. This demonstrates that PDX models provide a multitude of possibilities to identify and validate biomarkers, signaling pathways and resistance mechanisms for clinically relevant improvement in cancer therapy

    Influence of wood species on toxicity of log-wood stove combustion aerosols: A parallel animal and air-liquid interface cell exposure study on spruce and pine smoke

    Get PDF
    Background Wood combustion emissions have been studied previously either by in vitro or in vivo models using collected particles, yet most studies have neglected gaseous compounds. Furthermore, a more accurate and holistic view of the toxicity of aerosols can be gained with parallel in vitro and in vivo studies using direct exposure methods. Moreover, modern exposure techniques such as air-liquid interface (ALI) exposures enable better assessment of the toxicity of the applied aerosols than, for example, the previous state-of-the-art submerged cell exposure techniques. Methods We used three different ALI exposure systems in parallel to study the toxicological effects of spruce and pine combustion emissions in human alveolar epithelial (A549) and murine macrophage (RAW264.7) cell lines. A whole-body mouse inhalation system was also used to expose C57BL/6 J mice to aerosol emissions. Moreover, gaseous and particulate fractions were studied separately in one of the cell exposure systems. After exposure, the cells and animals were measured for various parameters of cytotoxicity, inflammation, genotoxicity, transcriptome and proteome. Results We found that diluted (1:15) exposure pine combustion emissions (PM1 mass 7.7 ± 6.5 mg m− 3, 41 mg MJZahl^{Zahl}) contained, on average, more PM and polycyclic aromatic hydrocarbons (PAHs) than spruce (PM1 mass 4.3 ± 5.1 mg m− 3, 26 mg MJ− 1) emissions, which instead showed a higher concentration of inorganic metals in the emission aerosol. Both A549 cells and mice exposed to these emissions showed low levels of inflammation but significantly increased genotoxicity. Gaseous emission compounds produced similar genotoxicity and a higher inflammatory response than the corresponding complete combustion emission in A549 cells. Systems biology approaches supported the findings, but we detected differing responses between in vivo and in vitro experiments. Conclusions Comprehensive in vitro and in vivo exposure studies with emission characterization and systems biology approaches revealed further information on the effects of combustion aerosol toxicity than could be achieved with either method alone. Interestingly, in vitro and in vivo exposures showed the opposite order of the highest DNA damage. In vitro measurements also indicated that the gaseous fraction of emission aerosols may be more important in causing adverse toxicological effects. Combustion aerosols of different wood species result in mild but aerosol specific in vitro and in vivo effects

    Particulate matter from both heavy fuel oil and diesel fuel shipping emissions show strong biological effects on human lung cells at realistic and comparable in vitro exposure conditions

    Get PDF
    Background: Ship engine emissions are important with regard to lung and cardiovascular diseases especially in coastal regions worldwide. Known cellular responses to combustion particles include oxidative stress and inflammatory signalling. Objectives: To provide a molecular link between the chemical and physical characteristics of ship emission particles and the cellular responses they elicit and to identify potentially harmful fractions in shipping emission aerosols. Methods: Through an air-liquid interface exposure system, we exposed human lung cells under realistic in vitro conditions to exhaust fumes from a ship engine running on either common heavy fuel oil (HFO) or cleaner-burning diesel fuel (DF). Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling including isotope labelling methods to characterise the lung cell responses. Results: The HFO emissions contained high concentrations of toxic compounds such as metals and polycyclic aromatic hydrocarbon, and were higher in particle mass. These compounds were lower in DF emissions, which in turn had higher concentrations of elemental carbon (“soot”). Common cellular reactions included cellular stress responses and endocytosis. Reactions to HFO emissions were dominated by oxidative stress and inflammatory responses, whereas DF emissions induced generally a broader biological response than HFO emissions and affected essential cellular pathways such as energy metabolism, protein synthesis, and chromatin modification. Conclusions: Despite a lower content of known toxic compounds, combustion particles from the clean shipping fuel DF influenced several essential pathways of lung cell metabolism more strongly than particles from the unrefined fuel HFO. This might be attributable to a higher soot content in DF. Thus the role of diesel soot, which is a known carcinogen in acute air pollution-induced health effects should be further investigated. For the use of HFO and DF we recommend a reduction of carbonaceous soot in the ship emissions by implementation of filtration devices
    corecore