20 research outputs found

    Polymorphisms in pattern recognition receptors and their relationship to infectious disease susceptibility in pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pattern recognition receptors (PRRs), including Toll-like receptors (TLRs), are censoring receptors for molecules derived from bacteria, viruses, and fungi. The PRR system is a prerequisite for proper responses to pathogens, for example by cytokine production, resulting in pathogen eradication. Many cases of polymorphisms in PRR genes affecting the immune response and disease susceptibility are known in humans and mice.</p> <p>Methods</p> <p>We surveyed polymorphisms in pig genes encoding PRRs and investigated the relationship between some of the detected polymorphisms and molecular function or disease onset.</p> <p>Results</p> <p>Nonsynonymous polymorphisms abounded in pig TLR genes, particularly in the region corresponding to the ectodomains of TLRs expressed on the cell surface. Intracellular TLRs such as TLR3, TLR7, and TLR8, and other intracellular PRRs, such as the peptidoglycan receptor NOD2 and viral RNA receptors RIG-I and MDA5, also possessed nonsynonymous polymorphisms. Several of the polymorphisms influenced molecular functions such as ligand recognition. Polymorphisms in the PRR genes may be related to disease susceptibility in pigs: pigs with a particular allele of <it>TLR2</it> showed an increased tendency to contract pneumonia.</p> <p>Conclusions</p> <p>We propose the possibility of pig breeding aimed at disease resistance by the selection of PRR gene alleles that affect pathogen recognition.</p

    Fast plasma heating in a cone-attached geometry - Towards fusion ignition

    No full text
    We have developed a PW (0.5 ps/500 J) laser system to demonstrate fast heating of imploded core plasmas using a hollow cone shell target. Significant enhancement of thermal neutron yield has been realized with PW-laser heating, confirming that the high heating efficiency is maintained as the short-pulse laser power is substantially increased to a value nearly equivalent to the ignition condition. It appears that the efficient heating is realized by the guiding of the PW laser pulse energy within the hollow cone and by self-organized relativistic electron transport. Based on the experimental results, we are developing a 10 kJ-PW laser system to study the fast heating physics of high-density plasmas at an ignition-equivalent temperature

    Fast plasma heating in a cone-attached geometry - towards fusion ignition

    No full text
    We have developed a PW (0.5 ps/500 J) laser system to demonstrate fast heating of imploded core plasmas using a hollow cone shell target. Significant enhancement of thermal neutron yield has been realized with PW-laser heating, confirming that the high heating efficiency is maintained as the short-pulse laser power is substantially increased to a value nearly equivalent to the ignition condition. It appears that the efficient heating is realized by the guiding of the PW laser pulse energy within the hollow cone and by self-organized relativistic electron transport. Based on the experimental results, we are developing a 10 kJ-PW laser system to study the fast heating physics of high-density plasmas at an ignition-equivalent temperature

    Fast heating with a PW laser as a step to ignition

    No full text
    We have developed PW(0.5ps/500J) laser system to demonstrate fast heating of imploded core plasmas using a hollow cone shell target. Significant enhancement of thermal neutron yield has been realized with PW-laser heating, confirming that the high heating efficiency is maintained as the short-pulse laser power is substantially increased to near equivalent power to the ignition condition. The efficient heating could be caused by the efficient guiding of heating pulse with the hollow cone and self-organized relativistic electron transport. According to the experimental results, we are now developing a 10kJ-PW laser system to study the ignition-equivalent temperature heating physics

    In vitro reconstruction of a three-dimensional mouse hematopoietic microenvironment in the pore of polyurethane foam

    No full text
    Hematopoietic stem cells exist in specific niches in the bone marrow, and generate either more stem cells or differentiated hematopoietic progeny. In such microenvironments, cell–cell and cell–matrix interactions are as important as soluble factors such as cytokines. To provide a similar environment for in vitro studies, a three-dimensional culture technique is necessary. In this manuscript, we report the development of a three-dimensional culture system for murine bone marrow mononuclear cells (mBMMNCs) using polyurethane foam (PUF) as a scaffold. The mBMMNCs were inoculated into two kinds of PUF disks with different surface properties, and cultured without exogenous growth factors. After seeding the inside of the PUF pores with mBMMNCs, PUF disks were capable of supporting adherent cell growth and continuous cell production for up to 90 days. On days 21–24, most nonadherent cells were CD45 positive, and some of the cells were of the erythroid type. From comparisons of the cell growth in each PUF material, the mBMMNC culture in PUF-W1 produced more cells than the PUF-R4 culture. However, the mBMMNC culture in PUF-W1 had no advantages over PUF-R4 with regard to the maintenance of immature hematopoietic cells. The results of scanning electron microscopy and colony-forming assays confirmed the value of the different three dimensional cultures
    corecore