2,867 research outputs found

    A simulation of the Schwinger model in the overlap formalism

    Get PDF
    In the continuum, the single flavor massless Schwinger model has an exact global axial U(1)U(1) symmetry in the sector of perturbative gauge fields. This symmetry is explicitly broken by gauge fields with nonzero topological charge inducing a nonzero expectation value for the bilinear ψˉψ\bar\psi\psi. We show that a lattice formulation of this model, using the overlap formalism to treat the massless fermions, explicitly exhibits this phenomenon. A Monte Carlo simulation of the complete system yields the correct value of the fermion condensate and shows unambiguously that it originates from the sector of topological charge equal to unity.Comment: Plain TeX file, 9 pages

    Collisional decoherence reexamined

    Full text link
    We re-derive the quantum master equation for the decoherence of a massive Brownian particle due to collisions with the lighter particles from a thermal environment. Our careful treatment avoids the occurrence of squares of Dirac delta functions. It leads to a decoherence rate which is smaller by a factor of 2 pi compared to previous findings. This result, which is in agreement with recent experiments, is confirmed by both a physical analysis of the problem and by a perturbative calculation in the weak coupling limit.Comment: 33 pages, 4 figure

    Decoherence and the Nature of System-Environment Correlations

    Full text link
    We investigate system-environment correlations based on the exact dynamics of a qubit and its environment in the framework of pure decoherence (phase damping). We focus on the relation of decoherence and the build-up of system-reservoir entanglement for an arbitrary (possibly mixed) initial qubit state. In the commonly employed regime where the qubit dynamics can be described by a Markov master equation of Lindblad type, we find that for almost all qubit initial states inside the Bloch sphere, decoherence is complete while the total state is still separable - no entanglement is involved. In general, both "separable" and "entangling" decoherence occurs, depending on temperature and initial qubit state. Moreover, we find situations where classical and quantum correlations periodically alternate as a function of time in the regime of low temperatures

    Dynamical stability of entanglement between spin ensembles

    Full text link
    We study the dynamical stability of the entanglement between the two spin ensembles in the presence of an environment. For a comparative study, we consider the two cases: a single spin ensemble, and two ensembles linearly coupled to a bath, respectively. In both circumstances, we assume the validity of the Markovian approximation for the bath. We examine the robustness of the state by means of the growth of the linear entropy which gives a measure of the purity of the system. We find out macroscopic entangled states of two spin ensembles can stably exist in a common bath. This result may be very useful to generate and detect macroscopic entanglement in a common noisy environment and even a stable macroscopic memory.Comment: 4 pages, 1 figur

    A large-scale evaluation framework for EEG deep learning architectures

    Full text link
    EEG is the most common signal source for noninvasive BCI applications. For such applications, the EEG signal needs to be decoded and translated into appropriate actions. A recently emerging EEG decoding approach is deep learning with Convolutional or Recurrent Neural Networks (CNNs, RNNs) with many different architectures already published. Here we present a novel framework for the large-scale evaluation of different deep-learning architectures on different EEG datasets. This framework comprises (i) a collection of EEG datasets currently including 100 examples (recording sessions) from six different classification problems, (ii) a collection of different EEG decoding algorithms, and (iii) a wrapper linking the decoders to the data as well as handling structured documentation of all settings and (hyper-) parameters and statistics, designed to ensure transparency and reproducibility. As an applications example we used our framework by comparing three publicly available CNN architectures: the Braindecode Deep4 ConvNet, Braindecode Shallow ConvNet, and two versions of EEGNet. We also show how our framework can be used to study similarities and differences in the performance of different decoding methods across tasks. We argue that the deep learning EEG framework as described here could help to tap the full potential of deep learning for BCI applications.Comment: 7 pages, 3 figures, final version accepted for presentation at IEEE SMC 2018 conferenc

    Comment on the equivalence of Bakamjian-Thomas mass operators in different forms of dynamics

    Full text link
    We discuss the scattering equivalence of the generalized Bakamjian-Thomas construction of dynamical representations of the Poincar\'e group in all of Dirac's forms of dynamics. The equivalence was established by Sokolov in the context of proving that the equivalence holds for models that satisfy cluster separability. The generalized Bakamjian Thomas construction is used in most applications, even though it only satisfies cluster properties for systems of less than four particles. Different forms of dynamics are related by unitary transformations that remove interactions from some infinitesimal generators and introduce them to other generators. These unitary transformation must be interaction dependent, because they can be applied to a non-interacting generator and produce an interacting generator. This suggests that these transformations can generate complex many-body forces when used in many-body problems. It turns out that this is not the case. In all cases of interest the result of applying the unitary scattering equivalence results in representations that have simple relations, even though the unitary transformations are dynamical. This applies to many-body models as well as models with particle production. In all cases no new many-body operators are generated by the unitary scattering equivalences relating the different forms of dynamics. This makes it clear that the various calculations used in applications that emphasize one form of the dynamics over another are equivalent. Furthermore, explicit representations of the equivalent dynamical models in any form of dynamics are easily constructed. Where differences do appear is when electromagnetic probes are treated in the one-photon exchange approximation. This approximation is different in each of Dirac's forms of dynamics.Comment: 6 pages, no figure

    Where has all the information gone?

    Full text link
    The existence of spacetime singularities is irrelevant for the irreversible appearance of black holes. However, confirmation of the latter's unitary dynamics would require the preparation of a coherent superposition of a tremendous number of appropriate ``Everett worlds''.Comment: 10 pages, 1 figure, Latex - Invited paper for a special Einstein issue of Physics Letters

    Topologically decoherence-protected qubits with trapped ions

    Full text link
    We show that trapped ions can be used to simulate a highly symmetrical Hamiltonian with eingenstates naturally protected against local sources of decoherence. This Hamiltonian involves long range coupling between particles and provides a more efficient protection than nearest neighbor models discussed in previous works. Our results open the perspective of experimentally realizing in controlled atomic systems, complex entangled states with decoherence times up to nine orders of magnitude longer than isolated quantum systems.Comment: 4 page

    New paradigm in implant osseointegration

    Get PDF
    During the last years, implant dentistry has seen an dramatic increase as a treatment option in oral rehabilitation. This is based to a large extent on scientific advances and clinical improvements in implantology. The extension of indications has broadened the opprtunities to rehabilitate patients that were formerly considered to posess restricted indications to place implants. Additionally, patient desires (high aesthetic demands, fast prosthetic rehabilitation) were placed more in focus, resulting in new approaches in implant dentistry. As a result, the scientific and clinical community has reached high standards and at the same time has founded the basis for new opportunities in implantology. The advances are mirrored by a high number of high quality scientific papers, published in conventional and open-access journals. A major shift has thereby been observed in the understanding of implant healing, leading the basis for new implant systems that allow fast rehabilitation protocols. The term ossseointegration needs a new understanding since an immediate osseointegration state can be present under distinct conditions
    corecore