2,867 research outputs found
A simulation of the Schwinger model in the overlap formalism
In the continuum, the single flavor massless Schwinger model has an exact
global axial symmetry in the sector of perturbative gauge fields. This
symmetry is explicitly broken by gauge fields with nonzero topological charge
inducing a nonzero expectation value for the bilinear . We show
that a lattice formulation of this model, using the overlap formalism to treat
the massless fermions, explicitly exhibits this phenomenon. A Monte Carlo
simulation of the complete system yields the correct value of the fermion
condensate and shows unambiguously that it originates from the sector of
topological charge equal to unity.Comment: Plain TeX file, 9 pages
Collisional decoherence reexamined
We re-derive the quantum master equation for the decoherence of a massive
Brownian particle due to collisions with the lighter particles from a thermal
environment. Our careful treatment avoids the occurrence of squares of Dirac
delta functions. It leads to a decoherence rate which is smaller by a factor of
2 pi compared to previous findings. This result, which is in agreement with
recent experiments, is confirmed by both a physical analysis of the problem and
by a perturbative calculation in the weak coupling limit.Comment: 33 pages, 4 figure
Decoherence and the Nature of System-Environment Correlations
We investigate system-environment correlations based on the exact dynamics of
a qubit and its environment in the framework of pure decoherence (phase
damping). We focus on the relation of decoherence and the build-up of
system-reservoir entanglement for an arbitrary (possibly mixed) initial qubit
state. In the commonly employed regime where the qubit dynamics can be
described by a Markov master equation of Lindblad type, we find that for almost
all qubit initial states inside the Bloch sphere, decoherence is complete while
the total state is still separable - no entanglement is involved. In general,
both "separable" and "entangling" decoherence occurs, depending on temperature
and initial qubit state. Moreover, we find situations where classical and
quantum correlations periodically alternate as a function of time in the regime
of low temperatures
Dynamical stability of entanglement between spin ensembles
We study the dynamical stability of the entanglement between the two spin
ensembles in the presence of an environment. For a comparative study, we
consider the two cases: a single spin ensemble, and two ensembles linearly
coupled to a bath, respectively. In both circumstances, we assume the validity
of the Markovian approximation for the bath. We examine the robustness of the
state by means of the growth of the linear entropy which gives a measure of the
purity of the system. We find out macroscopic entangled states of two spin
ensembles can stably exist in a common bath. This result may be very useful to
generate and detect macroscopic entanglement in a common noisy environment and
even a stable macroscopic memory.Comment: 4 pages, 1 figur
A large-scale evaluation framework for EEG deep learning architectures
EEG is the most common signal source for noninvasive BCI applications. For
such applications, the EEG signal needs to be decoded and translated into
appropriate actions. A recently emerging EEG decoding approach is deep learning
with Convolutional or Recurrent Neural Networks (CNNs, RNNs) with many
different architectures already published. Here we present a novel framework
for the large-scale evaluation of different deep-learning architectures on
different EEG datasets. This framework comprises (i) a collection of EEG
datasets currently including 100 examples (recording sessions) from six
different classification problems, (ii) a collection of different EEG decoding
algorithms, and (iii) a wrapper linking the decoders to the data as well as
handling structured documentation of all settings and (hyper-) parameters and
statistics, designed to ensure transparency and reproducibility. As an
applications example we used our framework by comparing three publicly
available CNN architectures: the Braindecode Deep4 ConvNet, Braindecode Shallow
ConvNet, and two versions of EEGNet. We also show how our framework can be used
to study similarities and differences in the performance of different decoding
methods across tasks. We argue that the deep learning EEG framework as
described here could help to tap the full potential of deep learning for BCI
applications.Comment: 7 pages, 3 figures, final version accepted for presentation at IEEE
SMC 2018 conferenc
Comment on the equivalence of Bakamjian-Thomas mass operators in different forms of dynamics
We discuss the scattering equivalence of the generalized Bakamjian-Thomas
construction of dynamical representations of the Poincar\'e group in all of
Dirac's forms of dynamics. The equivalence was established by Sokolov in the
context of proving that the equivalence holds for models that satisfy cluster
separability. The generalized Bakamjian Thomas construction is used in most
applications, even though it only satisfies cluster properties for systems of
less than four particles. Different forms of dynamics are related by unitary
transformations that remove interactions from some infinitesimal generators and
introduce them to other generators. These unitary transformation must be
interaction dependent, because they can be applied to a non-interacting
generator and produce an interacting generator. This suggests that these
transformations can generate complex many-body forces when used in many-body
problems. It turns out that this is not the case. In all cases of interest the
result of applying the unitary scattering equivalence results in
representations that have simple relations, even though the unitary
transformations are dynamical. This applies to many-body models as well as
models with particle production. In all cases no new many-body operators are
generated by the unitary scattering equivalences relating the different forms
of dynamics. This makes it clear that the various calculations used in
applications that emphasize one form of the dynamics over another are
equivalent. Furthermore, explicit representations of the equivalent dynamical
models in any form of dynamics are easily constructed. Where differences do
appear is when electromagnetic probes are treated in the one-photon exchange
approximation. This approximation is different in each of Dirac's forms of
dynamics.Comment: 6 pages, no figure
Where has all the information gone?
The existence of spacetime singularities is irrelevant for the irreversible
appearance of black holes. However, confirmation of the latter's unitary
dynamics would require the preparation of a coherent superposition of a
tremendous number of appropriate ``Everett worlds''.Comment: 10 pages, 1 figure, Latex - Invited paper for a special Einstein
issue of Physics Letters
Topologically decoherence-protected qubits with trapped ions
We show that trapped ions can be used to simulate a highly symmetrical
Hamiltonian with eingenstates naturally protected against local sources of
decoherence. This Hamiltonian involves long range coupling between particles
and provides a more efficient protection than nearest neighbor models discussed
in previous works. Our results open the perspective of experimentally realizing
in controlled atomic systems, complex entangled states with decoherence times
up to nine orders of magnitude longer than isolated quantum systems.Comment: 4 page
New paradigm in implant osseointegration
During the last years, implant dentistry has seen an dramatic increase as a treatment option in oral rehabilitation. This is based to a large extent on scientific advances and clinical improvements in implantology. The extension of indications has broadened the opprtunities to rehabilitate patients that were formerly considered to posess restricted indications to place implants. Additionally, patient desires (high aesthetic demands, fast prosthetic rehabilitation) were placed more in focus, resulting in new approaches in implant dentistry. As a result, the scientific and clinical community has reached high standards and at the same time has founded the basis for new opportunities in implantology. The advances are mirrored by a high number of high quality scientific papers, published in conventional and open-access journals. A major shift has thereby been observed in the understanding of implant healing, leading the basis for new implant systems that allow fast rehabilitation protocols. The term ossseointegration needs a new understanding since an immediate osseointegration state can be present under distinct conditions
- …