243 research outputs found
Hydrophobically stabilized open state for the lateral gate of the Sec translocon
The Sec translocon is a central component of cellular pathways for protein translocation and membrane integration. Using both atomistic and coarse-grained molecular simulations, we investigate the conformational landscape of the translocon and explore the role of peptide substrates in the regulation of the translocation and integration pathways. Inclusion of a hydrophobic peptide substrate in the translocon stabilizes the opening of the lateral gate for membrane integration, whereas a hydrophilic peptide substrate favors the closed lateral gate conformation. The relative orientation of the plug moiety and a peptide substrate within the translocon channel is similarly dependent on whether the substrate is hydrophobic or hydrophilic in character, and the energetics of the translocon lateral gate opening in the presence of a peptide substrate is governed by the energetics of the peptide interface with the membrane. Implications of these results for the regulation of Sec-mediated pathways for protein translocation vs. membrane integration are discussed
Impairment of DHA synthesis alters the expression of neuronal plasticity markers and the brain inflammatory status in mice
Docosahexaenoic acid (DHA) is a ω-3 fatty acid typically obtained from the diet or endogenously synthesized through the action of elongases (ELOVLs) and desaturases. DHA is a key central nervous system constituent and the precursor of several molecules that regulate the resolution of inflammation. In the present study, we questioned whether the impaired synthesis of DHA affected neural plasticity and inflammatory status in the adult brain. To address this question, we investigated neural and inflammatory markers from mice deficient for ELOVL2 (Elovl2−/−), the key enzyme in DHA synthesis. From our findings, Elovl2−/− mice showed an altered expression of markers involved in synaptic plasticity, learning, and memory formation such as Egr-1, Arc1, and BDNF specifically in the cerebral cortex, impacting behavioral functions only marginally. In parallel, we also found that DHA-deficient mice were characterized by an increased expression of pro-inflammatory molecules, namely TNF, IL-1β, iNOS, caspase-1 as well as the activation and morphologic changes of microglia in the absence of any brain injury or disease. Reintroducing DHA in the diet of Elovl2−/− mice reversed such alterations in brain plasticity and inflammation. Hence, impairment of systemic DHA synthesis can modify the brain inflammatory and neural plasticity status, supporting the view that DHA is an essential fatty acid with an important role in keeping inflammation within its physiologic boundary and in shaping neuronal functions in the central nervous system
Impairment of DHA synthesis alters the expression of neuronal plasticity markers and the brain inflammatory status in mice.
Docosahexaenoic acid (DHA) is a ω-3 fatty acid typically obtained from the diet or endogenously synthesized through the action of elongases (ELOVLs) and desaturases. DHA is a key central nervous system constituent and the precursor of several molecules that regulate the resolution of inflammation. In the present study, we questioned whether the impaired synthesis of DHA affected neural plasticity and inflammatory status in the adult brain. To address this question, we investigated neural and inflammatory markers from mice deficient for ELOVL2 (Elovl2-/- ), the key enzyme in DHA synthesis. From our findings, Elovl2-/- mice showed an altered expression of markers involved in synaptic plasticity, learning, and memory formation such as Egr-1, Arc1, and BDNF specifically in the cerebral cortex, impacting behavioral functions only marginally. In parallel, we also found that DHA-deficient mice were characterized by an increased expression of pro-inflammatory molecules, namely TNF, IL-1β, iNOS, caspase-1 as well as the activation and morphologic changes of microglia in the absence of any brain injury or disease. Reintroducing DHA in the diet of Elovl2-/- mice reversed such alterations in brain plasticity and inflammation. Hence, impairment of systemic DHA synthesis can modify the brain inflammatory and neural plasticity status, supporting the view that DHA is an essential fatty acid with an important role in keeping inflammation within its physiologic boundary and in shaping neuronal functions in the central nervous system
Production of Silver Nanoparticles with Strong and Stable Antimicrobial Activity against Highly Pathogenic and Multidrug Resistant Bacteria
Aims. To synthesize, characterize, and analyze antimicrobial activity of AgNPs of Escherichia hermannii (SHE), Citrobacter sedlakii (S11P), and Pseudomonas putida (S5). Methods. The synthesized AgNPs were examined using ultraviolet-visible spectroscopy (UV-vis) and, zeta potential, and the size and the morphology obtained from the three different isolates were also confirmed by TEM. Results. Among the three isolates tested, SHE showed the best antimicrobial activity due to the presence of small (4–12 nm) and stable (−22 mV) AgNPs. Stability of AgNPs was also investigated and found to be dependent on the nature of isolates. Conclusion. Produced AgNPs showed particle stability and antimicrobial efficacy up to 90 days of production. Our AgNPs exhibited greater antimicrobial activity compared with gentamicin against P. aeruginosa isolates and vancomycin against S. aureus and MRSA isolates at very low concentration (0.0002 mg per Microliters)
Determining Peptide Partitioning Properties via Computer Simulation
The transfer of polypeptide segments into lipid bilayers to form transmembrane helices represents the crucial first step in cellular membrane protein folding and assembly. This process is driven by complex and poorly understood atomic interactions of peptides with the lipid bilayer environment. The lack of suitable experimental techniques that can resolve these processes both at atomic resolution and nanosecond timescales has spurred the development of computational techniques. In this review, we summarize the significant progress achieved in the last few years in elucidating the partitioning of peptides into lipid bilayer membranes using atomic detail molecular dynamics simulations. Indeed, partitioning simulations can now provide a wealth of structural and dynamic information. Furthermore, we show that peptide-induced bilayer distortions, insertion pathways, transfer free energies, and kinetic insertion barriers are now accurate enough to complement experiments. Further advances in simulation methods and force field parameter accuracy promise to turn molecular dynamics simulations into a powerful tool for investigating a wide range of membrane active peptide phenomena
Structure-based statistical analysis of transmembrane helices
Recent advances in determination of the high-resolution structure of membrane proteins now enable analysis of the main features of amino acids in transmembrane (TM) segments in comparison with amino acids in water-soluble helices. In this work, we conducted a large-scale analysis of the prevalent locations of amino acids by using a data set of 170 structures of integral membrane proteins obtained from the MPtopo database and 930 structures of water-soluble helical proteins obtained from the protein data bank. Large hydrophobic amino acids (Leu, Val, Ile, and Phe) plus Gly were clearly prevalent in TM helices whereas polar amino acids (Glu, Lys, Asp, Arg, and Gln) were less frequent in this type of helix. The distribution of amino acids along TM helices was also examined. As expected, hydrophobic and slightly polar amino acids are commonly found in the hydrophobic core of the membrane whereas aromatic (Trp and Tyr), Pro, and the hydrophilic amino acids (Asn, His, and Gln) occur more frequently in the interface regions. Charged amino acids are also statistically prevalent outside the hydrophobic core of the membrane, and whereas acidic amino acids are frequently found at both cytoplasmic and extra-cytoplasmic interfaces, basic amino acids cluster at the cytoplasmic interface. These results strongly support the experimentally demonstrated biased distribution of positively charged amino acids (that is, the so-called the positive-inside rule) with structural data
BB0172, a Borrelia burgdorferi Outer Membrane Protein That Binds Integrin Α3Β1
Lyme disease is a multisystemic disorder caused by Borrelia burgdorferi infection. Upon infection, some B. burgdorferi genes are upregulated, including members of the microbial surface components recognizing adhesive matrix molecule (MSCRAMM) protein family, which facilitate B. burgdorferi adherence to extracellular matrix components of the host. Comparative genome analysis has revealed a new family of B. burgdorferi proteins containing the von Willebrand factor A (vWFA) domain. In the present study, we characterized the expression and membrane association of the vWFA domain-containing protein BB0172 by using in vitro transcription/translation systems in the presence of microsomal membranes and with detergent phase separation assays. Our results showed evidence of BB0172 localization in the outer membrane, the orientation of the vWFA domain to the extracellular environment, and its function as a metal ion-dependent integrin-binding protein. This is the first report of a borrelial adhesin with a metal ion-dependent adhesion site (MIDAS) motif that is similar to those observed in eukaryotic integrins and has a similar function
Viral Bcl2s' transmembrane domain interact with host Bcl2 proteins to control cellular apoptosis
Viral control of programmed cell death relies in part on the expression of viral analogs of the B-cell lymphoma 2 (Bcl2) protein known as viral Bcl2s (vBcl2s). vBcl2s control apoptosis by interacting with host pro- and anti-apoptotic members of the Bcl2 family. Here, we show that the carboxyl-terminal hydrophobic region of herpesviral and poxviral vBcl2s can operate as transmembrane domains (TMDs) and participate in their homo-oligomerization. Additionally, we show that the viral TMDs mediate interactions with cellular pro- and anti-apoptotic Bcl2 TMDs within the membrane. Furthermore, these intra-membrane interactions among viral and cellular proteins are necessary to control cell death upon an apoptotic stimulus. Therefore, their inhibition represents a new potential therapy against viral infections, which are characterized by short- and long-term deregulation of programmed cell death
BAT3 Guides Misfolded Glycoproteins Out of the Endoplasmic Reticulum
Secretory and membrane proteins that fail to acquire their native conformation within the lumen of the Endoplasmic Reticulum (ER) are usually targeted for ubiquitin-dependent degradation by the proteasome. How partially folded polypeptides are kept from aggregation once ejected from the ER into the cytosol is not known. We show that BAT3, a cytosolic chaperone, is recruited to the site of dislocation through its interaction with Derlin2. Furthermore, we observe cytoplasmic BAT3 in a complex with a polypeptide that originates in the ER as a glycoprotein, an interaction that depends on the cytosolic disposition of both, visualized even in the absence of proteasomal inhibition. Cells depleted of BAT3 fail to degrade an established dislocation substrate. We thus implicate a cytosolic chaperone as an active participant in the dislocation of ER glycoproteins.United States. National Institutes of HealthBoehringer Ingelheim Fond
HLA-B-associated transcript 3 (Bat3/Scythe) negatively regulates Smad phosphorylation in BMP signaling
Members of the transforming growth factor-β (TGF-β) superfamily participate in numerous biological phenomena in multiple tissues, including in cell proliferation, differentiation, and migration. TGF-β superfamily proteins therefore have prominent roles in wound healing, fibrosis, bone formation, and carcinogenesis. However, the molecular mechanisms regulating these signaling pathways are not fully understood. Here, we describe the regulation of bone morphogenic protein (BMP) signaling by Bat3 (also known as Scythe or BAG6). Bat3 overexpression in murine cell lines suppresses the activity of the Id1 promoter normally induced by BMP signaling. Conversely, Bat3 inactivation enhances the induction of direct BMP target genes, such as Id1, Smad6, and Smad7. Consequently, Bat3 deficiency accelerates the differentiation of primary osteoblasts into bone, with a concomitant increase in the bone differentiation markers Runx2, Osterix, and alkaline phosphatase. Using biochemical and cell biological analyses, we show that Bat3 inactivation sustains the C-terminal phosphorylation and nuclear localization of Smad1, 5, and 8 (Smad1/5/8), thereby enhancing biological responses to BMP treatment. At the mechanistic level, we show that Bat3 interacts with the nuclear phosphatase small C-terminal domain phosphatase (SCP) 2, which terminates BMP signaling by dephosphorylating Smad1/5/8. Notably, Bat3 enhances SCP2–Smad1 interaction only when the BMP signaling pathway is activated. Our results demonstrate that Bat3 is an important regulator of BMP signaling that functions by modulating SCP2–Smad interaction
- …