20 research outputs found

    Behavioral and Electrophysiological Effects of Transcranial Direct Current Stimulation of the Parietal Cortex in a Visuo-Spatial Working Memory Task

    Get PDF
    Impairments of working memory (WM) performance are frequent concomitant symptoms in several psychiatric and neurologic diseases. Despite the great advance in treating the reduced WM abilities in patients suffering from, e.g., Parkinsonā€™s and Alzheimerā€™s disease by means of transcranial direct current stimulation (tDCS), the exact neurophysiological underpinning subserving these therapeutic tDCS-effects are still unknown. In the present study we investigated the impact of tDCS on performance in a visuo-spatial WM task and its underlying neural activity. In three experimental sessions, participants performed a delayed matching-to-sample WM task after sham, anodal, and cathodal tDCS over the right parietal cortex. The results showed that tDCS modulated WM performance and its underlying electrophysiological brain activity in a polarity-specific way. Parietal tDCS altered event-related potentials and oscillatory power in the alpha band at posterior electrode sites. The present study demonstrates that posterior tDCS can alter visuo-spatial WM performance by modulating the underlying neural activity. This result can be considered an important step toward a better understanding of the mechanisms involved in tDCS-induced modulations of cognitive processing. This is of particular importance for the application of electrical brain stimulation as a therapeutic treatment of neuropsychiatric deficits in clinical populations

    On the Typology, Costs, Energy Performance, Environmental Quality and Operational Characteristics of Double Skin FaƧades in European Buildings

    No full text
    The project BESTFAƇADE, sponsored by the Energy Intelligent Europe programme of the European Union, and led by MCE-Anlagenbau, Austria, accumulated the state of the art of double skin faƧades (DSFs) in seven European countries (Austria, Belgium, France, Germany, Greece, Portugal and Sweden). Twenty-eight faƧades of different buildings in all partner countries of BESTFAƇADE have been analysed for the aspects, types of faƧade in different countries, DSFs in different climatic regions of Europe, existing simulations and measurements, thermal behaviour, indoor air quality, comfort, user acceptance, energy demand and consumptions, control strategies, integrated building technology, cost (investment, maintenance and operation), resource conservation, environmental impact, comparison to conventional glass faƧades (CGFs), integration of renewable energy sources into DSFs, as well as non-energy related issues, such as, acoustics, aesthetics, fire protection, moisture, corrosion, durability, maintenance and repair. Most of the buildings are office buildings, followed by schools and service buildings. Nearly all of the buildings have mechanical ventilation systems, and both heating and cooling are performed mostly by air heating/cooling systems. The types of faƧades are mainly multi-storey and corridor types; in Belgium juxtaposed modules are frequently used. The faƧade gaps are mostly naturally ventilated (except for Belgium, where the indoor air is led by mechanical ventilation via the gap to the centralized air handling unit). The shading is performed mainly with Venetian blinds located in the gap. Unfortunately data on energy demand and temperatures are infrequently measured and rarely available. The cost of DSFs is significantly higher than conventional faƧades. Ā© 2007 Taylor & Francis Group, LLC
    corecore