990 research outputs found

    Theory and Phenomenology of Heavy Flavor at RHIC

    Full text link
    We review the problem of heavy-quark diffusion in the Quark-Gluon Plasma and its ramifications for heavy-quark spectra in heavy-ion collisions at RHIC. In particular, we attempt to reconcile underlying mechanisms of several seemingly different approaches that have been put forward to explain the large suppression and elliptic flow of non-photonic electron spectra. We also emphasize the importance of a quantitative description of the bulk medium evolution to extract reliable values for the heavy-quark diffusion coefficient.Comment: 8 pages latex, including 10 eps figures; plenary talk at SQM08, Beijing (China), Oct. 06-10, 200

    R\^ole of the pion electromagnetic form factor in the Δ(1232)γN\Delta(1232) \to \gamma^\ast N timelike transition

    Full text link
    The Δ(1232)γN\Delta(1232) \to \gamma^\ast N magnetic dipole form factor (GMG_M^\ast) is described here within a new covariant model that combines the valence quark core together with the pion cloud contributions. The pion cloud term is parameterized by two terms: one connected to the pion electromagnetic form factor, the other to the photon interaction with intermediate baryon states. The model can be used in studies of pp and heavy ion collisions. In the timelike region this new model improves the results obtained with a constant form factor model fixed at its value at zero momentum transfer. At the same time, and in contrast to the Iachello model, this new model predicts a peak for the transition form factor at the expected position, i.e. at the ρ\rho mass pole. We calculate the decay of the ΔγN\Delta \to \gamma N transition, the Dalitz decay (Δe+eN\Delta \to e^+ e^- N), and the Δ\Delta mass distribution function. The impact of the model on dilepton spectra in pp collisions is also discussed.Comment: 11 pages, 10 figure

    Interpretation of Recent SPS Dilepton Data

    Get PDF
    We summarize our current theoretical understanding of in-medium properties of the electromagnetic current correlator in view of recent dimuon data from the NA60 experiment in In(158 AGeV)-In collisions at the CERN-SPS. We discuss the sensitivity of the results to space-time evolution models for the hot and dense partonic and hadronic medium created in relativistic heavy-ion collisions and the contributions from different sources to the dilepton-excess spectra.Comment: To appear in the proceedings of the 19th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2006) v2: references added, minor typos correcte

    Renormalization of Self-consistent Approximation schemes Finite Temperature II: Applications to the Sunset Diagram

    Full text link
    The theoretical concepts for the renormalization of self-consistent Dyson resummations, deviced in the first paper of this series, are applied to first example cases for the ϕ4\phi^4-theory. Besides the tadpole (Hartree) approximation as a novel part the numerical solutions are presented which includes the sunset self-energy diagram into the self-consistent scheme based on the Φ\Phi-derivable approximation or 2PI effective action concept.Comment: 18 pages, 7 figures Changes in version 2: Adapted title to the first paper of the series, added one figure and some references. This version was submitted to Phys. Rev. D; Changes in version 3: added one more reference Changes in version 4 (accepted for publication by Phys. Rev. D): Added a paragraph about the massless case and some remarks in the introductio

    Renormalization in Self-Consistent Approximation schemes at Finite Temperature III: Global Symmetries

    Get PDF
    We investigate the symmetry properties for Baym's Φ\Phi-derivable schemes. We show that in general the solutions of the dynamical equations of motion, derived from approximations of the Φ\Phi-functional, do not fulfill the Ward-Takahashi identities of the symmetry of the underlying classical action, although the conservation laws for the expectation values of the corresponding Noether currents are fulfilled exactly for the approximation. Further we prove that one can define an effective action functional in terms of the self-consistent propagators which is invariant under the operation of the same symmetry group representation as the classical action. The requirements for this theorem to hold true are the same as for perturbative approximations: The symmetry has to be realized linearly on the fields and it must be free of anomalies, i.e., there should exist a symmetry conserving regularization scheme. In addition, if the theory is renormalizable in Dyson's narrow sense, it can be renormalized with counter terms which do not violate the symmetry.Comment: 32 papges, 3 figures, uses ReVTeX 4, V2: Added one more reference, V3: Corrected some typos, added two more sections about the large-N expansio

    Heavy-Quark Diffusion, Flow and Recombination at RHIC

    Full text link
    We discuss recent developments in assessing heavy-quark interaction in the Quark-Gluon Plasma (QGP). While induced gluon radiation is expected to be the main energy-loss mechanism for fast-moving quarks, we focus on elastic scattering which prevails toward lower energies, evaluating both perturbative (gluon-exchange) and nonperturbative (resonance formation) interactions in the QGP. The latter are treated within an effective model for D- and B-meson resonances above T_c as motivated by current QCD lattice calculations. Pertinent diffusion and drag constants, following from a Fokker-Planck equation, are implemented into an expanding fireball model for Au-Au collisions at RHIC using relativistic Langevin simulations. Heavy quarks are hadronized in a combined fragmentation and coalescence framework, and resulting electron-decay spectra are compared to recent RHIC data. A reasonable description of both nuclear suppression factors and elliptic flow up to momenta of ~5 GeV supports the notion of a strongly interacting QGP created at RHIC. Consequences and further tests of the proposed resonance interactions are discussed.Comment: 8 pages, 14 figures, contribution to the proceedings for the "International Conference on Strangeness in Quark Matter 2006

    Chiral symmetry restoration in linear sigma models with different numbers of quark flavors

    Full text link
    Chiral symmetry restoration at nonzero temperature is studied in the framework of the O(4) linear sigma model and the U(N_f)_r x U(N_f)_l linear sigma model with N_f=2,3, and 4 quark flavors. We investigate the temperature dependence of the masses of the scalar and pseudoscalar mesons, and the non-strange, strange, and charm condensates within the Hartree approximation as derived from the Cornwall-Jackiw-Tomboulis formalism. We find that the masses of the non-strange and strange mesons at nonzero temperature depend sensitively on the particular symmetry of the model and the number of light quark flavors N_f. On the other hand, due to the large charm quark mass, neither do charmed mesons significantly affect the properties of the other mesons, nor do their masses change appreciably in the temperature range around the chiral symmetry restoration temperature. In the chiral limit, the transition temperatures for chiral symmetry restoration are surprisingly close to those found in lattice QCD.Comment: 28 pages, 8 figure

    Elliptic flow and nuclear modification factors of D-mesons at FAIR

    Get PDF

    Improving Orbit Estimates for Incomplete Orbits with a New Approach to Priors -- with Applications from Black Holes to Planets

    Get PDF
    We propose a new approach to Bayesian prior probability distributions (priors) that can improve orbital solutions for low-phase-coverage orbits, where data cover less than approximately 40% of an orbit. In instances of low phase coverage such as with stellar orbits in the Galactic center or with directly-imaged exoplanets, data have low constraining power and thus priors can bias parameter estimates and produce under-estimated confidence intervals. Uniform priors, which are commonly assumed in orbit fitting, are notorious for this. We propose a new observable-based prior paradigm that is based on uniformity in observables. We compare performance of this observable-based prior and of commonly assumed uniform priors using Galactic center and directly-imaged exoplanet (HR 8799) data. The observable-based prior can reduce biases in model parameters by a factor of two and helps avoid under-estimation of confidence intervals for simulations with less than about 40% phase coverage. Above this threshold, orbital solutions for objects with sufficient phase coverage such as S0-2, a short-period star at the Galactic center with full phase coverage, are consistent with previously published results. Below this threshold, the observable-based prior limits prior influence in regions of prior dominance and increases data influence. Using the observable-based prior, HR 8799 orbital analyses favor lower eccentricity orbits and provide stronger evidence that the four planets have a consistent inclination around 30 degrees to within 1-sigma. This analysis also allows for the possibility of coplanarity. We present metrics to quantify improvements in orbital estimates with different priors so that observable-based prior frameworks can be tested and implemented for other low-phase-coverage orbits.Comment: Published in AJ. 23 pages, 14 figures. Monte Carlo chains are available in the published article, or are available upon reques

    Testing Gravitation in the Solar System with Radio Science experiments

    Full text link
    The laws of gravitation have been tested for a long time with steadily improving precision, leading at some moment of time to paradigmatic evolutions. Pursuing this continual effort is of great importance for science. In this communication, we focus on Solar System tests of gravity and more precisely on possible tests that can be performed with radio science observations (Range and Doppler). After briefly reviewing the current tests of gravitation at Solar System scales, we give motivations to continue such experiments. In order to obtain signature and estimate the amplitude of anomalous signals that could show up in radio science observables because of modified gravitational laws, we developed a new software that simulates Range/Doppler signals. We present this new tool that simulates radio science observables directly from the space-time metric. We apply this tool to the Cassini mission during its cruise from Jupiter to Saturn and derive constraints on the parameters entering alternative theories of gravity beyond the standard Parametrized Post Newtonian theory.Comment: proceedings of SF2A 2011 - minor changes (typos corrected - references updated
    corecore