60 research outputs found

    IMAGING WHITE MATTER IN HUMAN BRAINSTEM

    No full text
    The human brainstem is critical for the control of many life-sustaining functions, such as consciousness, respiration, sleep, and transfer of sensory and motor information between the brain and the spinal cord. Most of our knowledge about structure and organization of white and gray matter within the brainstem is derived from ex vivo dissection and histology studies. However, these methods cannot be applied to study structural architecture in live human participants. Tractography from diffusion-weighted MRI may provide valuable insights about white matter organization within the brainstem in vivo. However, this method presents technical challenges in vivo due to susceptibility artifacts, functionally dense anatomy, as well as pulsatile and respiratory motion. To investigate the limits of MR tractography, we present results from high angular resolution diffusion imaging (HARDI) of an intact excised human brainstem performed at 11.1T using isotropic resolution of 0.333, 1, and 2 mm, with the latter reflecting resolution currently used clinically. At the highest resolution, the dense fiber architecture of the brainstem is evident, but the definition of structures degrades as resolution decreases. In particular, the inferred corticopontine/corticospinal tracts (CPT/CST), superior (SCP) and middle cerebellar peduncle (MCP), and medial lemniscus (ML) pathways are clearly discernable and follow known anatomical trajectories at the highest spatial resolution. At lower resolutions, the CST/CPT, SCP, and MCP pathways are artificially enlarged due to inclusion of collinear and crossing fibers not inherent to these three pathways. The inferred ML pathways appear smaller at lower resolutions, indicating insufficient spatial information to successfully resolve smaller fiber pathways. Our results suggest that white matter tractography maps derived from the excised brainstem can be used to guide the study of the brainstem architecture using diffusion MRI in vivo

    Progress in high field MRI at the University of Florida

    No full text
    In this article we report on progress in high magnetic field MRI at the University of Florida in support of our new 750MHz wide bore and 11.7T/40cm MR instruments. The primary emphasis is on the associated rf technology required, particularly high frequency volume and phased array coils. Preliminary imaging results at 750MHz are presented. Our results imply that the pursuit of even higher fields seems warranted. (C) 2002 Elsevier Science B.V. All rights reserved

    Gray and White Matter Contributions to Cognitive Frontostriatal Deficits in Non-Demented Parkinson's Disease

    No full text
    <div><p>Objective</p><p>This prospective investigation examined: 1) processing speed and working memory relative to other cognitive domains in non-demented medically managed idiopathic Parkinson’s disease, and 2) the predictive role of cortical/subcortical gray thickness/volume and white matter fractional anisotropy on processing speed and working memory.</p><p>Methods</p><p>Participants completed a neuropsychological protocol, Unified Parkinson’s Disease Rating Scale, brain MRI, and fasting blood draw to rule out vascular contributors. Within group <i>a priori</i> anatomical contributors included bilateral frontal thickness, caudate nuclei volume, and prefrontal white matter fractional anisotropy.</p><p>Results</p><p>Idiopathic Parkinson’s disease (n = 40; Hoehn & Yahr stages 1–3) and non-Parkinson’s disease ‘control’ peers (n = 40) matched on demographics, general cognition, comorbidity, and imaging/blood vascular metrics. Cognitively, individuals with Parkinson’s disease were significantly more impaired than controls on tests of processing speed, secondary deficits on working memory, with subtle impairments in memory, abstract reasoning, and visuoperceptual/spatial abilities. Anatomically, Parkinson’s disease individuals were not statistically different in cortical gray thickness or subcortical gray volumes with the exception of the putamen. Tract Based Spatial Statistics showed reduced prefrontal fractional anisotropy for Parkinson’s disease relative to controls. Within Parkinson’s disease, prefrontal fractional anisotropy and caudate nucleus volume partially explained processing speed. For controls, only prefrontal white matter was a significant contributor to processing speed. There were no significant anatomical predictors of working memory for either group.</p><p>Conclusions</p><p>Caudate nuclei volume and prefrontal fractional anisotropy, not frontal gray matter thickness, showed unique and combined significance for processing speed in Parkinson’s disease. Findings underscore the relevance for examining gray-white matter interactions and also highlight clinical processing speed metrics as potential indicators of early cognitive impairment in PD.</p></div

    Group comparison by neuropsychological domain composite score.

    No full text
    <p>Each composite is based on the average of subtest standardized z-scores derived from published normative references. Average scores range from -0.67 to +0.67. Composite subtest scores are shown in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0147332#pone.0147332.s001" target="_blank">S1 Table</a>.</p
    • …
    corecore