136 research outputs found

    Development of Stresses in Cohesionless Poured Sand

    Full text link
    The pressure distribution beneath a conical sandpile, created by pouring sand from a point source onto a rough rigid support, shows a pronounced minimum below the apex (`the dip'). Recent work of the authors has attempted to explain this phenomenon by invoking local rules for stress propagation that depend on the local geometry, and hence on the construction history, of the medium. We discuss the fundamental difference between such approaches, which lead to hyperbolic differential equations, and elastoplastic models, for which the equations are elliptic within any elastic zones present .... This displacement field appears to be either ill-defined, or defined relative to a reference state whose physical existence is in doubt. Insofar as their predictions depend on physical factors unknown and outside experimental control, such elastoplastic models predict that the observations should be intrinsically irreproducible .... Our hyperbolic models are based instead on a physical picture of the material, in which (a) the load is supported by a skeletal network of force chains ("stress paths") whose geometry depends on construction history; (b) this network is `fragile' or marginally stable, in a sense that we define. .... We point out that our hyperbolic models can nonetheless be reconciled with elastoplastic ideas by taking the limit of an extremely anisotropic yield condition.Comment: 25 pages, latex RS.tex with rspublic.sty, 7 figures in Rsfig.ps. Philosophical Transactions A, Royal Society, submitted 02/9

    The Nearby Optical Galaxy Sample: The Local Galaxy Luminosity Function

    Get PDF
    In this paper we derive the galaxy luminosity function from the Nearby Optical Galaxy (NOG) sample, which is a nearly complete, magnitude-limited (B<14 mag), all-sky sample of nearby optical galaxies (~6400 galaxies with cz<5500 km/s). For this local sample, we use galaxy distance estimates based on different peculiar velocity models. Therefore, the derivation of the luminosity function is carried out using the locations of field and grouped galaxies in real distance space. The local field galaxy luminosity function in the B system is well described by a Schechter function. The exact values of the Schechter parameters slightly depend on the adopted peculiar velocity field models. The shape of the luminosity function of spiral galaxies does not differ significantly from that of E-S0 galaxies. On the other hand, the late-type spirals and irregulars have a very steeply rising luminosity function towards the faint end, whereas the ellipticals appreciably decrease in number towards low luminosities. The presence of galaxy systems in the NOG sample does not affect significantly the field galaxy luminosity function, since environmental effects on the total luminosity function appear to be marginal.Comment: 35 pages including 7 figures and 4 tables. Accepted for publication in Ap

    Identificación y análisis de los recursos económicos asignados a la segunda locomotora. Evolución, aciertos y desaciertos

    Get PDF
    Con la elaboración del presente documento, se pretende identificar y analizar los recursos económicos asignados a una de las locomotoras del gobierno del presidente Juan Manuel Santos en el marco de su plan de desarrollo Prosperidad para todos y el impacto social de esta asignación de recursos en el agro Colombiano, Así mismo evaluar el cumplimiento de dicha política publica y la generación de bienestar social en la población."With the production of the present document, one tries to identify and to analyze the economic resources assigned to one of the locomotives of the government of the president Juan Manuel Santos in the frame of his plan of development "" Prosperity for all "" and the social impact of this assignment of resources in the Colombian agro, Likewise to evaluate the fulfillment of the above mentioned politics publishes and the generation of social well-being in the population.

    The luminosity function of field galaxies

    Full text link
    Schmidt's method for construction of luminosity function of galaxies is generalized by taking into account the dependence of density of galaxies from the distance in the near Universe. The logarithmical luminosity function (LLF) of field galaxies depending on morphological type is constructed. We show that the LLF for all galaxies, and also separately for elliptical and lenticular galaxies can be presented by Schechter function in narrow area of absolute magnitudes. The LLF of spiral galaxies was presented by Schechter function for enough wide area of absolute magnitudes: . Spiral galaxies differ slightly by parameter . At transition from early spirals to the late spirals parameter in Schechter function is reduced. The reduction of mean luminosity of galaxies is observed at transition from elliptical galaxies to lenticular galaxies, to early spiral galaxies, and further, to late spiral galaxies, in a bright end, . The completeness and the average density of samples of galaxies of different morphological types are estimated. In the range the mean number density of all galaxies is equal 0.127 Mpc-3.Comment: 14 page, 8 figures, to appear in Astrophysic

    Closest Star Seen Orbiting the Supermassive Black Hole at the Centre of the Milky Way

    Full text link
    Measurements of stellar velocities and variable X-ray emission near the centre of the Milky Way have provided the strongest evidence so far that the dark mass concentrations seen in many galactic nuclei are likely supermassive black holes, but have not yet excluded several alternative configurations. Here we report ten years of high resolution astrometric imaging that allow us to trace two thirds of the orbit of the star currently closest to the compact radio source and massive black hole candidate SgrA*. In particular, we have observed both peri- and apocentre passages. Our observations show that the star is on a bound, highly elliptical Keplerian orbit around SgrA*, with an orbital period of 15.2 years and a peri-centre distance of only 17 light hours. The orbital elements require an enclosed point mass of 3.7+-1.5x10^6 solar masses. The data exclude with high confidence that the central dark mass consists of a cluster of astrophysical objects or massive, degenerate fermions, and strongly constrain the central density structure.Comment: 13 pages, 3 figures, scheduled for publication in Nature on 17 Oct 200

    A comparative study of different model families for the constitutive simulation of viscous clays

    Get PDF
    The simulation of the viscous behavior of some clays is of high importance in many geotechnical problems. The literature offers a vast amount of constitutive models able to simulate the rate dependence observed on these materials. Although most of thesemodels are calibrated to very similar experimental observations and share similar definitions ofmaterial parameters, some discrepancies of their response have been detected, which are related to their mathematical formulations. In this work, the causes of these discrepancies are carefully studied. To that end, four different model families are analyzed, namely, nonstationary flow surface (NSFS) models, viscoplasticity with overstress function (OVP), viscoplasticity with Norton\u27s power law (NVP), and visco-hypoplasticity (VHP). For the sake of a fair comparison, single constitutive models using the same set of material parameters, and following other requirements, are developed for each model family. Numerical implementations of the four resulting models are performed. Their response at different tests are carefully analyzed through simulation examples and direct examination of their constitutive equations. The set includes some basic tests at isotropic stress states and others as responses envelopes, undrained creep rupture, and an oedometer test with loading, unloading-reloading, creep, and relaxation. The article is concluded with some remarks about the observed discrepancies of these model families
    corecore