74 research outputs found

    RHOA (ras homolog gene family, member A)

    Get PDF
    Review on RHOA (ras homolog gene family, member A), with data on DNA, on the protein encoded, and where the gene is implicated

    An apicobasal gradient of Rac activity determines protrusion form and position

    Get PDF
    Each cell within a polarised epithelial sheet must align and correctly position a wide range of subcellular structures, including actin-based dynamic protrusions. Using in vivo inducible transgenes that can sense or modify Rac activity, we demonstrate an apicobasal gradient of Rac activity that is required to correctly form and position distinct classes of dynamic protrusion along the apicobasal axis of the cell. We show that we can modify the Rac activity gradient in genetic mutants for specific polarity proteins, with consequent changes in protrusion form and position and additionally show, using photoactivatable Rac transgenes, that it is the level of Rac activity that determines protrusion form. Thus, we demonstrate a mechanism by which polarity proteins can spatially regulate Rac activity and the actin cytoskeleton to ensure correct epithelial cell shape and prevent epithelial-to-mesenchymal transitions

    Localization and Broadband Follow-Up of the Gravitational-Wave Transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser InterferometerGravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimatesof the time, significance, and sky location of the event were shared with 63 teams of observers covering radio,optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter wedescribe the low-latency analysis of the GW data and present the sky localization of the first observed compactbinary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-rayCoordinates Network circulars, giving an overview of the participating facilities, the GW sky localizationcoverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger,there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadbandcampaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broadcapabilities of the transient astronomy community and the observing strategies that have been developed to pursueneutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-upcampaign are being disseminated in papers by the individual teams

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Tumor-suppressor activity of RRIG1 in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Retinoid receptor-induced gene-1 (RRIG1) is a novel gene that has been lost in several types of human cancers. The aim of this study was to determine whether RRIG1 plays a role in breast cancer, such as in the suppression of breast cancer cell growth and invasion.</p> <p>Methods</p> <p>Immunohistochemistry was used to detect RRIG1 expression in breast tissue specimens. Gene transfection was used to restore or knock down RRIG1 expression in breast cancer cell lines for analysis of cell viability, colony formation, and migration/invasion potential. Reverse-transcription polymerase chain reaction and western blot assays were used to detect the changes in gene expression. The RhoA activation assay was used to assess RRIG1-induced inhibition of RhoA activity.</p> <p>Results</p> <p>The immunohistochemical data showed that <it>RRIG1 </it>expression was reduced in breast cancer tissues compared with normal and atypical hyperplastic breast tissues. <it>RRIG1 </it>expression was inversely correlated with lymph node metastasis of breast cancer but was not associated with the status of hormone receptors, such as estrogen receptor, progesterone receptor, or HER2. Furthermore, restoration of <it>RRIG1 </it>expression inhibited proliferation, colony formation, migration, and invasion of breast cancer cells. Expression of RRIG1 also reduced phosphorylated Erk1/2 and Akt levels; c-Jun, MMP9, and Akt expressions; and RhoA activity. In contrast, knockdown of RRIG1 expression promoted breast cancer cell proliferation, colony formation, migration, and invasion potential.</p> <p>Conclusion</p> <p>The data from the current study indicated that <it>RRIG1 </it>expression was reduced or lost in breast cancer and that restoration of RRIG1 expression suppressed breast cancer cell growth and invasion capacity. Future studies will determine the underlying molecular mechanisms and define RRIG1 as a tumor-suppressor gene in breast cancer.</p

    Essential Role of Cdc42 in Ras-Induced Transformation Revealed by Gene Targeting

    Get PDF
    The ras proto-oncogene is one of the most frequently mutated genes in human cancer. However, given the prevalence of activating mutations in Ras and its association with aggressive forms of cancer, attempts to therapeutically target aberrant Ras signaling have been largely disappointing. This lack of progress highlights the deficiency in our understanding of cellular pathways required for Ras-mediated tumorigenesis and suggests the importance of identifying new molecular pathways associated with Ras-driven malignancies. Cdc42 is a Ras-related small GTPase that is known to play roles in oncogenic processes such as cell growth, survival, invasion, and migration. A pan-dominant negative mutant overexpression approach to suppress Cdc42 and related pathways has previously shown a requirement for Cdc42 in Ras-induced anchorage-independent cell growth, however the lack of specificity of such approaches make it difficult to determine if effects are directly related to changes in Cdc42 activity or other Rho family members. Therefore, in order to directly and unambiguously address the role of Cdc42 in Ras-mediated transformation, tumor formation and maintenance, we have developed a model of conditional cdc42 gene in Ras-transformed cells. Loss of Cdc42 drastically alters the cell morphology and inhibits proliferation, cell cycle progression and tumorigenicity of Ras-transformed cells, while non-transformed cells or c-Myc transformed cells are largely unaffected. The loss of Cdc42 in Ras-transformed cells results in reduced Akt signaling, restoration of which could partially rescues the proliferation defects associated with Cdc42 loss. Moreover, disruption of Cdc42 function in established tumors inhibited continued tumor growth. These studies implicate Cdc42 in Ras-driven tumor growth and suggest that targeting Cdc42 is beneficial in Ras-mediated malignancies

    Protein Kinase C Iota Regulates Pancreatic Acinar-to-Ductal Metaplasia

    Get PDF
    Pancreatic acinar-to-ductal metaplasia (ADM) is associated with an increased risk of pancreatic cancer and is considered a precursor of pancreatic ductal adenocarcinoma. Transgenic expression of transforming growth factor alpha (TGF-α) or K-rasG12D in mouse pancreatic epithelium induces ADM in vivo. Protein kinase C iota (PKCι) is highly expressed in human pancreatic cancer and is required for the transformed growth and tumorigenesis of pancreatic cancer cells. In this study, PKCι expression was assessed in a mouse model of K-rasG12D-induced pancreatic ADM and pancreatic cancer. The ability of K-rasG12D to induce pancreatic ADM in explant culture, and the requirement for PKCι, was investigated. PKCι is elevated in human and mouse pancreatic ADM and intraepithelial neoplastic lesions in vivo. We demonstrate that K-rasG12D is sufficient to induce pancreatic ADM in explant culture, exhibiting many of the same morphologic and biochemical alterations observed in TGF-α-induced ADM, including a dependence on Notch activation. PKCι is highly expressed in both TGF-α- and K-rasG12D-induced pancreatic ADM and inhibition of PKCι significantly reduces TGF-α- and K-rasG12D-mediated ADM. Inhibition of PKCι suppresses K-rasG12D–induced MMP-7 expression and Notch activation, and exogenous MMP-7 restores K-rasG12D–mediated ADM in PKCι-depleted cells, implicating a K-rasG12D-PKCι-MMP-7 signaling axis that likely induces ADM through Notch activation. Our results indicate that PKCι is an early marker of pancreatic neoplasia and suggest that PKCι is a potential downstream target of K-rasG12D in pancreatic ductal metaplasia in vivo

    Differential Role of Human Choline Kinase α and β Enzymes in Lipid Metabolism: Implications in Cancer Onset and Treatment

    Get PDF
    11 pages, 6 figures, 1 table.Background The Kennedy pathway generates phosphocoline and phosphoethanolamine through its two branches. Choline Kinase (ChoK) is the first enzyme of the Kennedy branch of synthesis of 1phosphocholine, the major component of the plasma membrane. ChoK family of proteins is composed by ChoKα and ChoKβ isoforms, the first one with two different variants of splicing. Recently ChoKα has been implicated in the carcinogenic process, since it is over-expressed in a variety of human cancers. However, no evidence for a role of ChoKβ in carcinogenesis has been reported. Methodology/Principal Findings Here we compare the in vitro and in vivo properties of ChoKα1 and ChoKβ in lipid metabolism, and their potential role in carcinogenesis. Both ChoKα1 and ChoKβ showed choline and ethanolamine kinase activities when assayed in cell extracts, though with different affinity for their substrates. However, they behave differentially when overexpressed in whole cells. Whereas ChoKβ display an ethanolamine kinase role, ChoKα1 present a dual choline/ethanolamine kinase role, suggesting the involvement of each ChoK isoform in distinct biochemical pathways under in vivo conditions. In addition, while overexpression of ChoKα1 is oncogenic when overexpressed in HEK293T or MDCK cells, ChoKβ overexpression is not sufficient to induce in vitro cell transformation nor in vivo tumor growth. Furthermore, a significant upregulation of ChoKα1 mRNA levels in a panel of breast and lung cancer cell lines was found, but no changes in ChoKβ mRNA levels were observed. Finally, MN58b, a previously described potent inhibitor of ChoK with in vivo antitumoral activity, shows more than 20-fold higher efficiency towards ChoKα1 than ChoKβ. Conclusion/Significance This study represents the first evidence of the distinct metabolic role of ChoKα and ChoKβ isoforms, suggesting different physiological roles and implications in human carcinogenesis. These findings constitute a step forward in the design of an antitumoral strategy based on ChoK inhibition.This work has been supported by grants to JCL from Comunidad de Madrid (GR-SAL-0821-2004), Ministerio de Ciencia e Innovación (SAF2008-03750, RD06/0020/0016), Fundación Mutua Madrileña, and by a grant to ARM from Fundación Mutua Madrileña.Peer reviewe
    corecore