322 research outputs found

    Policy actors and policy making in contemporary Hungary

    Get PDF

    Covering a symmetric poset by symmetric chains

    Full text link

    NLC-2 graph recognition and isomorphism

    Get PDF
    NLC-width is a variant of clique-width with many application in graph algorithmic. This paper is devoted to graphs of NLC-width two. After giving new structural properties of the class, we propose a O(n2m)O(n^2 m)-time algorithm, improving Johansson's algorithm \cite{Johansson00}. Moreover, our alogrithm is simple to understand. The above properties and algorithm allow us to propose a robust O(n2m)O(n^2 m)-time isomorphism algorithm for NLC-2 graphs. As far as we know, it is the first polynomial-time algorithm.Comment: soumis \`{a} WG 2007; 12

    Nonbipartite Dulmage-Mendelsohn Decomposition for Berge Duality

    Full text link
    The Dulmage-Mendelsohn decomposition is a classical canonical decomposition in matching theory applicable for bipartite graphs, and is famous not only for its application in the field of matrix computation, but also for providing a prototypal structure in matroidal optimization theory. The Dulmage-Mendelsohn decomposition is stated and proved using the two color classes, and therefore generalizing this decomposition for nonbipartite graphs has been a difficult task. In this paper, we obtain a new canonical decomposition that is a generalization of the Dulmage-Mendelsohn decomposition for arbitrary graphs, using a recently introduced tool in matching theory, the basilica decomposition. Our result enables us to understand all known canonical decompositions in a unified way. Furthermore, we apply our result to derive a new theorem regarding barriers. The duality theorem for the maximum matching problem is the celebrated Berge formula, in which dual optimizers are known as barriers. Several results regarding maximal barriers have been derived by known canonical decompositions, however no characterization has been known for general graphs. In this paper, we provide a characterization of the family of maximal barriers in general graphs, in which the known results are developed and unified

    kk-Critical Graphs in P5P_5-Free Graphs

    Full text link
    Given two graphs H1H_1 and H2H_2, a graph GG is (H1,H2)(H_1,H_2)-free if it contains no induced subgraph isomorphic to H1H_1 or H2H_2. Let PtP_t be the path on tt vertices. A graph GG is kk-vertex-critical if GG has chromatic number kk but every proper induced subgraph of GG has chromatic number less than kk. The study of kk-vertex-critical graphs for graph classes is an important topic in algorithmic graph theory because if the number of such graphs that are in a given hereditary graph class is finite, then there is a polynomial-time algorithm to decide if a graph in the class is (k−1)(k-1)-colorable. In this paper, we initiate a systematic study of the finiteness of kk-vertex-critical graphs in subclasses of P5P_5-free graphs. Our main result is a complete classification of the finiteness of kk-vertex-critical graphs in the class of (P5,H)(P_5,H)-free graphs for all graphs HH on 4 vertices. To obtain the complete dichotomy, we prove the finiteness for four new graphs HH using various techniques -- such as Ramsey-type arguments and the dual of Dilworth's Theorem -- that may be of independent interest.Comment: 18 page

    Rainbow domination and related problems on some classes of perfect graphs

    Full text link
    Let k∈Nk \in \mathbb{N} and let GG be a graph. A function f:V(G)→2[k]f: V(G) \rightarrow 2^{[k]} is a rainbow function if, for every vertex xx with f(x)=∅f(x)=\emptyset, f(N(x))=[k]f(N(x)) =[k]. The rainbow domination number γkr(G)\gamma_{kr}(G) is the minimum of ∑x∈V(G)∣f(x)∣\sum_{x \in V(G)} |f(x)| over all rainbow functions. We investigate the rainbow domination problem for some classes of perfect graphs

    INDEPENDENT DISCOVERIES IN GRAPH THEORY *

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72829/1/j.1749-6632.1979.tb17761.x.pd

    A survey of χ\chi-boundedness

    Full text link
    If a graph has bounded clique number, and sufficiently large chromatic number, what can we say about its induced subgraphs? Andr\'as Gy\'arf\'as made a number of challenging conjectures about this in the early 1980's, which have remained open until recently; but in the last few years there has been substantial progress. This is a survey of where we are now

    Rapid mixing of the switch Markov chain for strongly stable degree sequences

    Get PDF
    The switch Markov chain has been extensively studied as the most natural Markov chain Monte Carlo approach for sampling graphs with prescribed degree sequences. We show that the switch chain for sampling simple undirected graphs with a given degree sequence is rapidly mixing when the degree sequence is so‐called strongly stable. Strong stability is satisfied by all degree sequences for which the switch chain was known to be rapidly mixing based on Sinclair's multicommodity flow method up until a recent manuscript of ErdƑs and coworkers in 2019. Our approach relies on an embedding argument, involving a Markov chain defined by Jerrum and Sinclair in 1990. This results in a much shorter proof that unifies (almost) all the rapid mixing results for the switch chain in the literature, and extends them up to sharp characterizations of P‐stable degree sequences. In particular, our work resolves an open problem posed by Greenhill and Sfragara in 2017
    • 

    corecore