444 research outputs found

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Modifying effect of dual antiplatelet therapy on incidence of stent thrombosis according to implanted drug-eluting stent type

    Get PDF
    Aim To investigate the putative modifying effect of dual antiplatelet therapy (DAPT) use on the incidence of stent thrombosis at 3 years in patients randomized to Endeavor zotarolimus-eluting stent (E-ZES) or Cypher sirolimus-eluting stent (C-SES). Methods and results Of 8709 patients in PROTECT, 4357 were randomized to E-ZES and 4352 to C-SES. Aspirin was to be given indefinitely, and clopidogrel/ticlopidine for ≥3 months or up to 12 months after implantation. Main outcome measures were definite or probable stent thrombosis at 3 years. Multivariable Cox regression analysis was applied, with stent type, DAPT, and their interaction as the main outcome determinants. Dual antiplatelet therapy adherence remained the same in the E-ZES and C-SES groups (79.6% at 1 year, 32.8% at 2 years, and 21.6% at 3 years). We observed a statistically significant (P = 0.0052) heterogeneity in treatment effect of stent type in relation to DAPT. In the absence of DAPT, stent thrombosis was lower with E-ZES vs. C-SES (adjusted hazard ratio 0.38, 95% confidence interval 0.19, 0.75; P = 0.0056). In the presence of DAPT, no difference was found (1.18; 0.79, 1.77; P = 0.43). Conclusion A strong interaction was observed between drug-eluting stent type and DAPT use, most likely prompted by the vascular healing response induced by the implanted DES system. These results suggest that the incidence of stent thrombosis in DES trials should not be evaluated independently of DAPT use, and the optimal duration of DAPT will likely depend upon stent type (Clinicaltrials.gov number NCT00476957

    Impact of Population Stratification on Family-Based Association in an Admixed Population

    Get PDF
    Population substructure is a well-known confounder in population-based case-control genetic studies, but its impact in familybased studies is unclear. We performed population substructure analysis using extended families of admixed population to evaluate power and Type I error in an association study framework. Our analysis shows that power was improved by 1.5% after principal components adjustment. Type I error was also reduced by 2.2% after adjusting for family substratification. The presence of population substructure was underscored by discriminant analysis, in which over 92% of individuals were correctly assigned to their actual family using only 100 principal components. This study demonstrates the importance of adjusting for population substructure in family-based studies of admixed populations

    Conserved amino acids in each subunit of the heteroligomeric tRNA m1A58 Mtase from Saccharomyces cerevisiae contribute to tRNA binding

    Get PDF
    In Saccharomyces cerevisiae, a two-subunit methyltransferase (Mtase) encoded by the essential genes TRM6 and TRM61 is responsible for the formation of 1-methyladenosine, a modified nucleoside found at position 58 in tRNA that is critical for the stability of tRNAiMet. The crystal structure of the homotetrameric m1A58 tRNA Mtase from Mycobacterium tuberculosis, TrmI, has been solved and was used as a template to build a model of the yeast m1A58 tRNA Mtase heterotetramer. We altered amino acids in TRM6 and TRM61 that were predicted to be important for the stability of the heteroligomer based on this model. Yeast strains expressing trm6 and trm61 mutants exhibited growth phenotypes indicative of reduced m1A formation. In addition, recombinant mutant enzymes had reduced in vitro Mtase activity. We demonstrate that the mutations introduced do not prevent heteroligomer formation and do not disrupt binding of the cofactor S-adenosyl-l-methionine. Instead, amino acid substitutions in either Trm6p or Trm61p destroy the ability of the yeast m1A58 tRNA Mtase to bind tRNAiMet, indicating that each subunit contributes to tRNA binding and suggesting a structural alteration of the substrate-binding pocket occurs when these mutations are present

    Partnering to proceed: scaling up adolescent sexual reproductive health programmes in Tanzania. Operational research into the factors that influenced local government uptake and implementation

    Get PDF
    BACKGROUND: Little is known about how to implement promising small-scale projects to reduce reproductive ill health and HIV vulnerability in young people on a large scale. This evaluation documents and explains how a partnership between a non-governmental organization (NGO) and local government authorities (LGAs) influenced the LGA-led scale-up of an innovative NGO programme in the wider context of a new national multisectoral AIDS strategy. METHODS: Four rounds of semi-structured interviews with 82 key informants, 8 group discussions with 49 district trainers and supervisors (DTS), 8 participatory workshops involving 52 DTS, and participant observations of 80% of LGA-led and 100% of NGO-led meetings were conducted, to ascertain views on project components, flow of communication and decision-making and amount of time DTS utilized undertaking project activities. RESULTS: Despite a successful ten-fold scale-up of intervention activities in three years, full integration into LGA systems did not materialize. LGAs contributed significant human resources but limited finances; the NGO retained control over finances and decision-making and LGAs largely continued to view activities as NGO driven. Embedding of technical assistants (TAs) in the LGAs contributed to capacity building among district implementers, but may paradoxically have hindered project integration, because TAs were unable to effectively transition from an implementing to a facilitating role. Operation of NGO administration and financial mechanisms also hindered integration into district systems. CONCLUSIONS: Sustainable intervention scale-up requires operational, financial and psychological integration into local government mechanisms. This must include substantial time for district systems to try out implementation with only minimal NGO support and modest output targets. It must therefore go beyond the typical three- to four-year project cycles. Scale-up of NGO pilot projects of this nature also need NGOs to be flexible enough to adapt to local government planning cycles and ongoing evaluation is needed to ensure strategies employed to do so really do achieve full intervention integration

    Novel AlkB Dioxygenases—Alternative Models for In Silico and In Vivo Studies

    Get PDF
    Background: ALKBH proteins, the homologs of Escherichia coli AlkB dioxygenase, constitute a direct, single-protein repair system, protecting cellular DNA and RNA against the cytotoxic and mutagenic activity of alkylating agents, chemicals significantly contributing to tumor formation and used in cancer therapy. In silico analysis and in vivo studies have shown the existence of AlkB homologs in almost all organisms. Nine AlkB homologs (ALKBH1–8 and FTO) have been identified in humans. High ALKBH levels have been found to encourage tumor development, questioning the use of alkylating agents in chemotherapy. The aim of this work was to assign biological significance to multiple AlkB homologs by characterizing their activity in the repair of nucleic acids in prokaryotes and their subcellular localization in eukaryotes. Methodology and Findings: Bioinformatic analysis of protein sequence databases identified 1943 AlkB sequences with eight new AlkB subfamilies. Since Cyanobacteria and Arabidopsis thaliana contain multiple AlkB homologs, they were selected as model organisms for in vivo research. Using E. coli alkB2 mutant and plasmids expressing cyanobacterial AlkBs, we studied the repair of methyl methanesulfonate (MMS) and chloroacetaldehyde (CAA) induced lesions in ssDNA, ssRNA, and genomic DNA. On the basis of GFP fusions, we investigated the subcellular localization of ALKBHs in A. thaliana and established its mostly nucleo-cytoplasmic distribution. Some of the ALKBH proteins were found to change their localization upon MMS treatment. Conclusions: Our in vivo studies showed highly specific activity of cyanobacterial AlkB proteins towards lesions and nucleic acid type. Subcellular localization and translocation of ALKBHs in A. thaliana indicates a possible role for these proteins in the repair of alkyl lesions. We hypothesize that the multiplicity of ALKBHs is due to their involvement in the metabolism of nucleo-protein complexes; we find their repair by ALKBH proteins to be economical and effective alternative to degradation and de novo synthesis
    corecore