70,419 research outputs found

    The Measurement of the Muon's Anomalous Magnetic Moment Isn't

    Get PDF
    Recent results announced as measurements of the muon's anomalous magnetic moment are in fact measurements of the muon's anomalous spin precession frequency. This precession frequency receives contributions from both the muon's anomalous magnetic and electric dipole moments. We note that all existing data cannot resolve this ambiguity, and the current deviation from standard model predictions may equally well be interpreted as evidence for new physics in the muon's anomalous magnetic moment, new physics in the muon's electric dipole moment, or both.Comment: 2 pages, 1 figure, published versio

    Heuristic algorithms for the min-max edge 2-coloring problem

    Full text link
    In multi-channel Wireless Mesh Networks (WMN), each node is able to use multiple non-overlapping frequency channels. Raniwala et al. (MC2R 2004, INFOCOM 2005) propose and study several such architectures in which a computer can have multiple network interface cards. These architectures are modeled as a graph problem named \emph{maximum edge qq-coloring} and studied in several papers by Feng et. al (TAMC 2007), Adamaszek and Popa (ISAAC 2010, JDA 2016). Later on Larjomaa and Popa (IWOCA 2014, JGAA 2015) define and study an alternative variant, named the \emph{min-max edge qq-coloring}. The above mentioned graph problems, namely the maximum edge qq-coloring and the min-max edge qq-coloring are studied mainly from the theoretical perspective. In this paper, we study the min-max edge 2-coloring problem from a practical perspective. More precisely, we introduce, implement and test four heuristic approximation algorithms for the min-max edge 22-coloring problem. These algorithms are based on a \emph{Breadth First Search} (BFS)-based heuristic and on \emph{local search} methods like basic \emph{hill climbing}, \emph{simulated annealing} and \emph{tabu search} techniques, respectively. Although several algorithms for particular graph classes were proposed by Larjomaa and Popa (e.g., trees, planar graphs, cliques, bi-cliques, hypergraphs), we design the first algorithms for general graphs. We study and compare the running data for all algorithms on Unit Disk Graphs, as well as some graphs from the DIMACS vertex coloring benchmark dataset.Comment: This is a post-peer-review, pre-copyedit version of an article published in International Computing and Combinatorics Conference (COCOON'18). The final authenticated version is available online at: http://www.doi.org/10.1007/978-3-319-94776-1_5

    Solar stereoscopy - where are we and what developments do we require to progress?

    Get PDF
    Observations from the two STEREO-spacecraft give us for the first time the possibility to use stereoscopic methods to reconstruct the 3D solar corona. Classical stereoscopy works best for solid objects with clear edges. Consequently an application of classical stereoscopic methods to the faint structures visible in the optically thin coronal plasma is by no means straight forward and several problems have to be treated adequately: 1.)First there is the problem of identifying one dimensional structures -e.g. active region coronal loops or polar plumes- from the two individual EUV-images observed with STEREO/EUVI. 2.) As a next step one has the association problem to find corresponding structures in both images. 3.) Within the reconstruction problem stereoscopic methods are used to compute the 3D-geometry of the identified structures. Without any prior assumptions, e.g., regarding the footpoints of coronal loops, the reconstruction problem has not one unique solution. 4.) One has to estimate the reconstruction error or accuracy of the reconstructed 3D-structure, which depends on the accuracy of the identified structures in 2D, the separation angle between the spacecraft, but also on the location, e.g., for east-west directed coronal loops the reconstruction error is highest close to the loop top. 5.) Eventually we are not only interested in the 3D-geometry of loops or plumes, but also in physical parameters like density, temperature, plasma flow, magnetic field strength etc. Helpful for treating some of these problems are coronal magnetic field models extrapolated from photospheric measurements, because observed EUV-loops outline the magnetic field. This feature has been used for a new method dubbed 'magnetic stereoscopy'. As examples we show recent application to active region loops.Comment: 12 Pages, 9 Figures, a Review articl

    Corrugated structure insertion for extending the SASE bandwidth up to 3% at the European XFEL

    Full text link
    The usage of x-ray free electron laser (XFEL) in femtosecond nanocrystallography involves sequential illumination of many small crystals of arbitrary orientation. Hence a wide radiation bandwidth will be useful in order to obtain and to index a larger number of Bragg peaks used for determination of the crystal orientation. Considering the baseline configuration of the European XFEL in Hamburg, and based on beam dynamics simulations, we demonstrate here that the usage of corrugated structures allows for a considerable increase in radiation bandwidth. Data collection with a 3% bandwidth, a few microjoule radiation pulse energy, a few femtosecond pulse duration, and a photon energy of 5.4 keV is possible. For this study we have developed an analytical modal representation of the short-range wake function of the flat corrugated structures for arbitrary offsets of the source and the witness particles.Comment: 29 pages, 17 figure
    corecore