3,061 research outputs found

    A study of Kapton degradation under simulated shuttle environment

    Get PDF
    A system was developed which employs a source of low energy oxygen ion to simulate the shuttle low Earth orbit environment. This source, together with diagnostic tools including surface analysis ans mass spectroscopic capability, was used to measure the dependence of ion energy of the oxygen induced CO signals from pyrolytic graphite and Kapton. For graphite the CO signal was examined at energies ranging form 4.5 to 465 eV and for Kapton from 4.5 to 188 eV. While the relative quantum yields inferred from the data are reasonably precise, there are large uncertainties in the absolute yields because of the assumptions necessary to covert the measured signal strengths to quantum yields. These assumptions are discussed in detail

    Oxygen interaction with space-power materials

    Get PDF
    Data from the space shuttle flights have established that many materials experience relatively rapid degradation when exposed to the low Earth orbit ambient atmosphere, which is predominately atomic oxygen. While much was learned from samples flown on the shuttle, laboratory simulations of the shuttle environment are necessary for a detailed understanding of the various interactions which contribute to the observed degradations. These laboratory experiments are particularly important for predicting the deterioration to be expected for materials aboard orbiting power systems, which will be exposed for long periods of time and could have components operating at very high temperatures. By using a mass spectrometer to synchronously detect molecules emitted from the surface as a result of amplitude modulated oxygen ion bombardment, quantum yields were obtained as a function of ion energy. A technique was developed to obtain preliminary yield data by slowly scanning the mass setting of the mass spectrometer; measurements were extended down to zero modulation frequency; yield data was obtained for the insulating materials (Nomex, Kevlar, and Teflon) used in the construction of electrodynamic tethers; a heated sample holder was constructed to investigate the effect of sample temperature on quantum yields; and the instrumentation was developed to observe the mass spectrometer signal as a function of time during and following bombardment of the sample by a brief (approximately 1 millisecond) pulse of ions

    The Testing and Concentration of a Low Grade Copper-Nickel Ore.

    Get PDF
    The purpose of this thesis is to investigate the possi­bility of concentrating a low grade copper-nickel ore, to determine the most effective method of concentration, and to attempt to draw some conclusions to determine whether or not the concentrates produced would be of sufficient high grade to make the recovery of nickel and copper a profit­able enterprise

    Spectroscopic binaries among AGB stars from HERMES/Mercator: the case of V Hya

    Full text link
    We report on our search for spectroscopic binaries among a sample of AGB stars. Observations were carried out in the framework of the monitoring of radial velocities of (candidate) binary stars performed at the Mercator 1.2m telescope, using the HERMES spectrograph. We found evidence for duplicity in UV Cam, TU Tau, BL Ori, VZ Per, T Dra, and V Hya. This short communication focus on V Hya, found to behave like RV Tau of the b subtype, which are binaries surrounded by a disc.Comment: Poster presented at IAU Symp. 343 "Why Galaxies Care About AGB Stars", Vienna, august 201

    IP Eri: A surprising long-period binary system hosting a He white dwarf

    Full text link
    We determine the orbital elements for the K0 IV + white dwarf (WD) system IP Eri, which appears to have a surprisingly long period of 1071 d and a significant eccentricity of 0.25. Previous spectroscopic analyses of the WD, based on a distance of 101 pc inferred from its Hipparcos parallax, yielded a mass of only 0.43 M_\odot, implying it to be a helium-core WD. The orbital properties of IP Eri are similar to those of the newly discovered long-period subdwarf B star (sdB) binaries, which involve stars with He-burning cores surrounded by extremely thin H envelopes, and are therefore close relatives to He WDs. We performed a spectroscopic analysis of high-resolution spectra from the HERMES/Mercator spectrograph and concluded that the atmospheric parameters of the K0 component are Teff=4960T_{\rm eff} = 4960 K, logg=3.3\log{g} = 3.3, [Fe/H] = 0.09 and ξ=1.5\xi = 1.5 km/s. The detailed abundance analysis focuses on C, N, O abundances, carbon isotopic ratio, light (Na, Mg, Al, Si, Ca, Ti) and s-process (Sr, Y, Zr, Ba, La, Ce, Nd) elements. We conclude that IP Eri abundances agree with those of normal field stars of the same metallicity. The long period and non-null eccentricity indicate that this system cannot be the end product of a common-envelope phase; it calls instead for another less catastrophic binary-evolution channel presented in detail in a companion paper (Siess et al. 2014).Comment: 14 pages, 10 figures, 4 tables, accepted for publication in A&A (Update of Table 3, Fig. 8 and text in Sect. 5.1, 5.3 and 6 due to minor corrections on N and Y II

    Classification of aerosol properties derived from AERONET direct sun data

    No full text
    International audienceAerosol spectral measurements by sunphotometers can be characterized by three independent pieces of information: 1) the optical thickness (AOT), a measure of the column aerosol concentration, 2) the optical thickness average spectral dependence, given by the Angstrom exponent (?), and 3) the spectral curvature of ? (??). We propose a simple graphical method to visually convert (?, ??) to the contribution of fine aerosol to the AOT and the size of the fine aerosols. This information can be used to track mixtures of pollution aerosol with dust, to distinguish aerosol growth from cloud contamination and to observe aerosol humidification. The graphical method is applied to the analysis of yearly records at 8 sites in 3 continents, characterized by different levels of pollution, biomass burning and mineral dust concentrations. Results depict the dominance of fine mode aerosols in driving the AOT at polluted sites. In stable meteorological conditions, we see an increase in the size of the fine aerosol as the pollution stagnates and increases in optical thickness. Coexistence of coarse and fine particles is evidenced at the polluted sites downwind of arid regions

    Panel Discussion

    Get PDF

    Towards F1 Hybrid Seed Potato Breeding

    Get PDF
    Compared to other major food crops, progress in potato yield as the result of breeding efforts is very slow. Genetic gains cannot be fixed in potato due to obligatory out-breeding. Overcoming inbreeding depression using diploid self-compatible clones should enable to replace the current method of out-breeding and clonal propagation into an F1 hybrid system with true seeds. This idea is not new, but has long been considered unrealistic. Severe inbreeding depression and self-incompatibility in diploid germplasm have hitherto blocked the development of inbred lines. Back-crossing with a homozygous progenitor with the Sli gene which inhibits gametophytic self-incompatibility gave self-compatible offspring from elite material from our diploid breeding programme. We demonstrate that homozygous fixation of donor alleles is possible, with simultaneous improvement of tuber shape and tuber size grading of the recipient inbred line. These results provide proof of principle for F1 hybrid potato breeding. The technical and economic perspectives are unprecedented as these will enable the development of new products with combinations of useful traits for all stakeholders in the potato chain. In addition, the hybrid’s seeds are produced by crossings, rendering the production and voluminous transport of potato seed tubers redundant as it can be replaced by direct sowing or the use of healthy mini-tubers, raised in greenhouses

    Tomography of the red supergiant star {\mu} Cep

    Full text link
    A tomographic method, aiming at probing velocity fields at depth in stellar atmospheres, is applied to the red supergiant star {\mu} Cep and to snapshots of 3D radiative-hydrodynamics simulation in order to constrain atmospheric motions and relate them to photometric variability.Comment: 2 pages, 2 figures, accepted as Proceedings of IAU Symposium No. 343, 201
    corecore