62 research outputs found

    Near-surface common-midpoint seismic data recorded with automatically planted geophones

    Get PDF
    This is the publisher's version, also available electronically from "http://onlinelibrary.wiley.com".[1] We introduce the Autojuggie II as a device to speed the emplacement of geophones for near-surface seismic common-midpoint (CMP) surveys. Hydraulic cylinders force rigidly interconnected geophones into the ground simultaneously and automatically. We demonstrate that accurate CMP data can be recorded with geophones planted by this device, and that a CMP stacked section can be processed, from which reliable geologic information can be extracted. To make this demonstration, we compare the stacked section to a coincident and parallel section, whose data was acquired using conventionally hand-planted geophones. The two sections are very similar in amplitude, phase, and frequency. A slight difference in coherency exists in a ∼35-ms reflection; the stack corresponding to the automatically planted geophones shows better coherency relative to the comparison stack. However, the similarity of the sections indicates that accurate CMP data can be recorded using geophones planted by the Autojuggie II

    The Cell Envelope Structure of Cable Bacteria

    Get PDF
    Cable bacteria are long, multicellular micro-organisms that are capable of transporting electrons from cell to cell along the longitudinal axis of their centimeter-long filaments. The conductive structures that mediate this long-distance electron transport are thought to be located in the cell envelope. Therefore, this study examines in detail the architecture of the cell envelope of cable bacterium filaments by combining different sample preparation methods (chemical fixation, resin-embedding, and cryo-fixation) with a portfolio of imaging techniques (scanning electron microscopy, transmission electron microscopy and tomography, focused ion beam scanning electron microscopy, and atomic force microscopy). We systematically imaged intact filaments with varying diameters. In addition, we investigated the periplasmic fiber sheath that remains after the cytoplasm and membranes were removed by chemical extraction. Based on these investigations, we present a quantitative structural model of a cable bacterium. Cable bacteria build their cell envelope by a parallel concatenation of ridge compartments that have a standard size. Larger diameter filaments simply incorporate more parallel ridge compartments. Each ridge compartment contains a ~50 nm diameter fiber in the periplasmic space. These fibers are continuous across cell-to-cell junctions, which display a conspicuous cartwheel structure that is likely made by invaginations of the outer cell membrane around the periplasmic fibers. The continuity of the periplasmic fibers across cells makes them a prime candidate for the sought-after electron conducting structure in cable bacteria

    The cell envelope structure of cable bacteria

    Get PDF
    Cable bacteria are long, multicellular micro-organisms that are capable of transporting electrons from cell to cell along the longitudinal axis of their centimeter-long filaments. The conductive structures that mediate this long-distance electron transport are thought to be located in the cell envelope. Therefore, this study examines in detail the architecture of the cell envelope of cable bacterium filaments by combining different sample preparation methods (chemical fixation, resin-embedding, and cryo-fixation) with a portfolio of imaging techniques (scanning electron microscopy, transmission electron microscopy and tomography, focused ion beam scanning electron microscopy, and atomic force microscopy). We systematically imaged intact filaments with varying diameters. In addition, we investigated the periplasmic fiber sheath that remains after the cytoplasm and membranes were removed by chemical extraction. Based on these investigations, we present a quantitative structural model of a cable bacterium. Cable bacteria build their cell envelope by a parallel concatenation of ridge compartments that have a standard size. Larger diameter filaments simply incorporate more parallel ridge compartments. Each ridge compartment contains a similar to 50 nm diameter fiber in the periplasmic space. These fibers are continuous across cell-to-cell junctions, which display a conspicuous cartwheel structure that is likely made by invaginations of the outer cell membrane around the periplasmic fibers. The continuity of the periplasmic fibers across cells makes them a prime candidate for the sought-after electron conducting structure in cable bacteria

    Decomposition of seismic signals via time-frequency representations

    No full text
    Conference PaperIn this paper we discuss the use of a time-frequency representation, the Wigner distribution, for the decomposition and characterization of seismic signals. The advantage of the Wigner distribution over other representations, such as the wavelet and sliding window Fourier transform, is its sharp localization properties in the time-frequency plane. However, the Wigner distribution is a not a linear transformation. This non-linearity complicates the use of the Wigner distribution for time-frequency filtering and decomposition. We present an optimization method for the reconstruction of a time signal from its Wigner distribution. The reconstruction technique enables a decomposition of a signal into its time-frequency components, where the reconstructed components are stripped off from the signal one by one. The method is illustrated a real data example. We also demonstrate how the decomposition can be used for suppression and enhancement of events in the time-frequency plane

    Decomposition of seismic signals via time-frequency representations

    No full text
    In this paper we discuss the use of a time-frequency representation, the Wigner distribution, for the decomposition and characterization of seismic signals. The advantage of the Wigner distribution over other representations, such as the wavelet and sliding window Fourier transform, is its sharp localization properties in the time-frequency plane. However, the Wigner distribution is a not a linear transformation. This non-linearity complicates the use of the Wigner distribution for time-frequency ltering and decomposition. We present an optimization method for the reconstruction of a time signal from its Wigner distribution. The reconstruction technique enables a decomposition of a signal into its time-frequency components, where the reconstructed components are stripped o from the signal one by one. We illustrate the method with a real data example. We also show how the decomposition can be used for suppression and enhancement ofevents in the time-frequency plane
    corecore