16,073 research outputs found
The rise and fall of Mr Choakumchild – learning outcomes and the teaching of creative writing
Multiband radar characterization of forest biomes
The utility of airborne and orbital SAR in classification, assessment, and monitoring of forest biomes is investigated through analysis of orbital synthetic aperature radar (SAR) and multifrequency and multipolarized airborne SAR imagery relying on image tone and texture. Preliminary airborne SAR experiments and truck-mounted scatterometer observations demonstrated that the three dimensional structural complexity of a forest, and the various scales of temporal dynamics in the microwave dielectric properties of both trees and the underlying substrate would severely limit empirical or semi-empirical approaches. As a consequence, it became necessary to develop a more profound understanding of the electromagnetic properties of a forest scene and their temporal dynamics through controlled experimentation coupled with theoretical development and verification. The concatenation of various models into a physically-based composite model treating the entire forest scene became the major objective of the study as this is the key to development of a series of robust retrieval algorithms for forest biophysical properties. In order to verify the performance of the component elements of the composite model, a series of controlled laboratory and field experiments were undertaken to: (1) develop techniques to measure the microwave dielectric properties of vegetation; (2) relate the microwave dielectric properties of vegetation to more readily measured characteristics such as density and moisture content; (3) calculate the radar cross-section of leaves, and cylinders; (4) improve backscatter models for rough surfaces; and (5) relate attenuation and phase delays during propagation through canopies to canopy properties. These modeling efforts, as validated by the measurements, were incorporated within a larger model known as the Michigan Microwave Canopy Scattering (MIMICS) Model
Understanding the deformation history of Murchison (CM2): clues from calcite twin stress analysis and high resolution X-ray Computed tomography
A simulation study of scene confusion factors in sensing soil moisture from orbital radar
Simulated C-band radar imagery for a 124-km by 108-km test site in eastern Kansas is used to classify soil moisture. Simulated radar resolutions are 100 m by 100 m, 1 km by 1km, and 3 km by 3 km. Distributions of actual near-surface soil moisture are established daily for a 23-day accounting period using a water budget model. Within the 23-day period, three orbital radar overpasses are simulated roughly corresponding to generally moist, wet, and dry soil moisture conditions. The radar simulations are performed by a target/sensor interaction model dependent upon a terrain model, land-use classification, and near-surface soil moisture distribution. The accuracy of soil-moisture classification is evaluated for each single-date radar observation and also for multi-date detection of relative soil moisture change. In general, the results for single-date moisture detection show that 70% to 90% of cropland can be correctly classified to within +/- 20% of the true percent of field capacity. For a given radar resolution, the expected classification accuracy is shown to be dependent upon both the general soil moisture condition and also the geographical distribution of land-use and topographic relief. An analysis of cropland, urban, pasture/rangeland, and woodland subregions within the test site indicates that multi-temporal detection of relative soil moisture change is least sensitive to classification error resulting from scene complexity and topographic effects
Mesoscale monitoring of the soil freeze/thaw boundary from orbital microwave radiometry
The fundamental objectives are to test the feasibility of delineating the lateral boundary between frozen and thawed condition in the surface layer of soil from orbital microwave radiometry and secondly to examine the sensitivity of general circulation models to an explicit parameterization of the boundary condition. Physical models were developed to relate emissivity to scene properties and a simulation package was developed to predict brightness temperature as a function of emissivity and physical temperature in order to address issues of heterogeneity, scaling, and scene dynamics. Radiative transfer models were develped for both bare soil surfaces and those obscured by an intervening layer of vegetation or snow. These models relate the emissivity to the physical properties of the soil and to those of the snow or vegetation cover. A SMMR simulation package was developed to evaluate the adequacy of the emission models and the limiting effects of scaling for realistic scenarios incorporating spatially heterogeneous scenes with dynamic moisture and temperature gradients at the pixel scale
Preservice Teachers’ Identity-Agency With Progressive Writing Pedagogies
This study explores the relationship between preservice teachers’ perceptions of their professional identities and their progressive primary school writing practices as part of a University-school partnership project. We analyse preservice teachers’ identities using discourse analysis and find a tension between self-perceptions as progressive teachers and the difficulties they experience enacting progressive pedagogies. For the majority, these difficulties are overcome through reflective theorising, but in utilising process drama, their otherwise expansive identity-agency is restricted by their wider apprehension of neoliberalism. We conclude by underlining the importance of specialised and concurrent models of teacher preparation which align preservice teachers’ identities and practice
Mesoscale monitoring of the soil freeze/thaw boundary from orbital microwave radiometry
A technique was developed for mapping the spatial extent of frozen soils from the spectral characteristics of the 10.7 to 37 GHz radiobrightness. Through computational models for the spectral radiobrightness of diurnally heated freesing soils, a distinctive radiobrightness signature was identified for frozen soils, and the signature was cast as a discriminant for unsupervised classification. In addition to large area images, local area spatial averages of radiobrightness were calculated for each radiobrightness channel at 7 meteorologic sites within the test region. Local area averages at the meteorologic sites were used to define the preliminary boundaries in the Freeze Indicator discriminate. Freeze Indicator images based upon Nimbus 7, Scanning Multichannel Microwave Radiometer (SMMR) data effectively map temporal variations in the freeze/thaw pattern for the northern Great Plains at the time scale of days. Diurnal thermal gradients have a small but measurable effect upon the SMMR spectral gradient. Scale-space filtering can be used to improve the spatial resolution of a freeze/thaw classified image
SIR-B measurements and modeling of vegetation
A summary is presented of the results derived from analysis of six SIR-B data takes over an agricultural test site in west central Illinois. The first part describes the procedure used to calibrate the SIR-B imagery, the second part pertains to the observed radar response to soil moisture content, and the last part examines the information derivable from multiangle observations
Kohn-Sham Exchange Potential for a Metallic Surface
The behavior of the surface barrier that forms at the metal-vacuum interface
is important for several fields of surface science. Within the Density
Functional Theory framework, this surface barrier has two non-trivial
components: exchange and correlation. Exact results are provided for the
exchange component, for a jellium metal-vacuum interface, in a slab geometry.
The Kohn-Sham exact-exchange potential has been generated by using
the Optimized Effective Potential method, through an accurate numerical
solution, imposing the correct boundary condition. It has been proved
analytically, and confirmed numerically, that ; this conclusion is not affected by the inclusion of correlation
effects. Also, the exact-exchange potential develops a shoulder-like structure
close to the interface, on the vacuum side. The issue of the classical image
potential is discussed.Comment: Phys. Rev. Lett. (to appear
- …
