340 research outputs found

    Monomeric PcrA helicase processively unwinds plasmid lengths of DNA in the presence of the initiator protein RepD

    Get PDF
    The helicase PcrA unwinds DNA during asymmetric replication of plasmids, acting with an initiator protein, in our case RepD. Detailed kinetics of PcrA activity were measured using bulk solution and a single-molecule imaging technique to investigate the oligomeric state of the active helicase complex, its processivity and the mechanism of unwinding. By tethering either DNA or PcrA to a microscope coverslip surface, unwinding of both linear and natural circular plasmid DNA by PcrA/RepD was followed in real-time using total internal reflection fluorescence microscopy. Visualization was achieved using a fluorescent single-stranded DNA-binding protein. The single-molecule data show that PcrA, in combination with RepD, can unwind plasmid lengths of DNA in a single run, and that PcrA is active as a monomer. Although the average rate of unwinding was similar in single-molecule and bulk solution assays, the single-molecule experiments revealed a wide distribution of unwinding speeds by different molecules. The average rate of unwinding was several-fold slower than the PcrA translocation rate on single-stranded DNA, suggesting that DNA unwinding may proceed via a partially passive mechanism. However, the fastest dsDNA unwinding rates measured in the single-molecule unwinding assays approached the PcrA translocation speed measured on ssDNA

    X-Ray photoelectron spectroscopy and mass spectrometry studies of X-ray-processed solid CO2

    Get PDF
    Solid CO2 films have been grown on a stainless steel substrate and processed by X-ray bombardment for up to 6 hr.. The reactions induced were monitored using X-ray photoelectron spectroscopy (XPS) and mass spectrometry. The XPS results are twofold: direct X-ray photolysis of the CO2 ice produced CO and an unidentified O product, possibly atomic O; secondary effects resulting from surface reactions between CO, O, and residual H from the vacuum environment produced H2CO, CH3OH, and a water ice cap on the CO2 film. The rate of production of CO from direct X-ray photolysis of CO2 is measured to be 5.4 × 102 molecule photon-1, corresponding to a formation cross section of 4.7 × 10-20 cm2. The growth rate for the water cap is calculated to be 2.6 × 10-4 monolayers s-1 for a partial pressure of H equal to 2 × 10-10 Torr. The appearance of gas-phase products from the film showed a time lag which indicates that the diffusion of the product species in the bulk CO2 is affected by some time-dependent process, possibly the creation of defects in the film. A model for the observed time dependence of the dissociation products in the gas phase yields diffusion coefficients in the CO2 of 5 × 10-12 and 1 × 10-12 cm2 s-1, for O and CO, respectively

    Implications of Arm Restraint on Lower Extremity Kinetics During Gait

    Get PDF
    Background Literature indicates the importance of the upper extremities in providing stability and propulsion for the body during ambulation. However, the kinetic implications of upper extremity restraint during gait are not as well documented. Aim The objective of this study was to examine the effect of arm restraint (unilateral and bilateral) on lower extremity joint kinetics during walking. Methods Twenty-three healthy young participants were instrumented for three dimensional motion analysis, and tested in four randomly ordered upper extremity restraint conditions (unrestrained, bilateral restraint, right side restraint, and left side restraint). Temporal spatial parameters and gait/phase-specific lower extremity kinetics and kinematics were measured. For each restraint condition, pointwise differences from the unrestrained condition were compared using a two-way ANOVA model of restraint condition (“Condition”) and gait cycle phase (“Timing”). Results Decreases in walking speed and stride length were observed for all restraint conditions. Differences in kinetic demands were also noted, primarily at the hip and knee. Conclusion Upper extremity restraint in healthy young adults leads to significant changes in temporal-spatial parameters and proximal joint kinetics, most prominently during periods of load accommodation and balance

    Insights into Chi recognition from the structure of an AddAB-type helicase–nuclease complex

    Get PDF
    Homologous recombination DNA repair requires double-strand break resection by helicase–nuclease enzymes. The crystal structure of bacterial AddAB in complex with DNA substrates shows that it employs an inactive helicase site to recognize ‘Chi' recombination hotspot sequences that regulate resection

    Single-molecule imaging of Bacteroides fragilis AddAB reveals the highly processive translocation of a single motor helicase

    Get PDF
    The AddAB helicase and nuclease complex is used for repairing double-strand DNA breaks in the many bacteria that do not possess RecBCD. Here, we show that AddAB, from the Gram-negative opportunistic pathogen Bacteroides fragilis, can rescue the ultraviolet sensitivity of an Escherichia coli recBCD mutant and that addAB is required for survival of B. fragilis following DNA damage. Using single-molecule observations we demonstrate that AddAB can translocate along DNA at up to 250 bp per second and can unwind an average of 14 000 bp, with some complexes capable of unwinding 40 000 bp. These results demonstrate the importance of processivity for facilitating encounters with recognition sequences that modify enzyme function during homologous recombination

    Visualizing helicases unwinding DNA at the single molecule level

    Get PDF
    DNA helicases are motor proteins that catalyze the unwinding of double-stranded DNA into single-stranded DNA using the free energy from ATP hydrolysis. Single molecule approaches enable us to address detailed mechanistic questions about how such enzymes move processively along DNA. Here, an optical method has been developed to follow the unwinding of multiple DNA molecules simultaneously in real time. This was achieved by measuring the accumulation of fluorescent single-stranded DNA-binding protein on the single-stranded DNA product of the helicase, using total internal reflection fluorescence microscopy. By immobilizing either the DNA or helicase, localized increase in fluorescence provides information about the rate of unwinding and the processivity of individual enzymes. In addition, it reveals details of the unwinding process, such as pauses and bursts of activity. The generic and versatile nature of the assay makes it applicable to a variety of DNA helicases and DNA templates. The method is an important addition to the single-molecule toolbox available for studying DNA processing enzymes

    Fornical and non-fornical projections from the rat hippocampal formation to the anterior thalamic nuclei

    Get PDF
    The hippocampal formation and anterior thalamic nuclei form part of an interconnected network thought to support memory. A central pathway in this mnemonic network comprises the direct projections from the hippocampal formation to the anterior thalamic nuclei, projections that, in the primate brain, originate in the subicular cortices to reach the anterior thalamic nuclei by way of the fornix. In the rat brain, additional pathways involving the internal capsule have been described, linking the dorsal subiculum to the anteromedial thalamic nucleus, as well as the postsubiculum to the anterodorsal thalamic nucleus. Confirming such pathways is essential in order to appreciate how information is transferred from the hippocampal formation to the anterior thalamus and how it may be disrupted by fornix pathology. Accordingly, in the present study, pathway tracers were injected into the anterior thalamic nuclei and the dorsal subiculum of rats with fornix lesions. Contrary to previous descriptions, projections from the subiculum to the anteromedial thalamic nucleus overwhelmingly relied on the fornix. Dorsal subiculum projections to the majority of the anteroventral nucleus also predominantly relied on the fornix, although postsubicular inputs to the lateral dorsal part of the anteroventral nucleus, as well as to the anterodorsal and laterodorsal thalamic nuclei, largely involved a non-fornical pathway, via the internal capsule
    corecore