265 research outputs found

    IoT Forensics: Challenges For The IoA Era

    Get PDF
    Challenges for IoT-based forensic investigations include the increasing amount of objects of forensic interest, relevance of identified and collected devices, blurry network boundaries, and edgeless networks. As we look ahead to a world of expanding ubiquitous computing, the challenge of forensic processes such as data acquisition (logical and physical) and extraction and analysis of data grows in this space. Containing an IoT breach is increasingly challenging – evidence is no longer restricted to a PC or mobile device, but can be found in vehicles, RFID cards, and smart devices. Through the combination of cloud-native forensics with client-side forensics (forensics for companion devices), we can study and develop the connection to support practical digital investigations and tackle emerging challenges in digital forensics. With the IoT bringing investigative complexity, this enhances challenges for the Internet of Anything (IoA) era. IoA brings anything and everything “online” in a connectedness that generates an explosion of connected devices, from fridges, cars and drones, to smart swarms, smart grids and intelligent buildings. Research to identify methods for performing IoT-based digital forensic analysis is essential. The long-term goal is the development of digital forensic standards that can be used as part of overall IoT and IoA security and aid IoT-based investigations

    Strategic avionics technology definition studies. Subtask 3-1A: Electrical Actuation (ELA) systems

    Get PDF
    This interim report presents the preliminary results of an electrical actuation (ELA) system study (subtask TA3-1A) to support the NASA strategic avionics technology definition studies. The final report of this ELA study is scheduled for September 30, 1993. The topics are presented in viewgraph form and include the following ELA technology demonstration testing; ELA system baseline; power and energy requirements for shuttle effector systems; power efficiency and losses of ELA effector systems; and power and energy requirements for ELA power sources

    Men and talk about legal abortion in South Africa: equality, support and rights discourses undermining reproductive ‘choice’

    Get PDF
    Discursive constructions of abortion are embedded in the social and gendered power relations of a particular socio-historical space. As part of research on public discourses concerning abortion in South Africa where there has been a radical liberalisation of abortion legislation, we collected data from male group discussions about a vignette concerning abortion, and newspaper articles written by men about abortion. Our analysis revealed how discourses of equality, support and rights may be used by men to subtly undermine women’s reproductive right to ‘choose’ an abortion. Within an Equal Partnership discourse, abortion, paired with the assumption of foetal personhood, was equated with violating an equal heterosexual partnership and a man’s patriarchal duty to protect a child. A New Man discourse, which positions men as supportive of women, was paired with the assumption of men as rational and women as irrational in decision-making, to allow for the possibility of men dissuading women from terminating a pregnancy. A Rights discourse was invoked to suggest that abortion violates men’s paternal rights

    Signatures of recent asteroid disruptions in the formation and evolution of solar system dust bands

    Get PDF
    We have performed detailed dynamical modeling of the structure of a faint dust band observed in coadded InfraRed Astronomical Satellite data at an ecliptic latitude of 17 degrees that convincingly demonstrates that it is the result of a relatively recent (significantly less than 1Ma) disruption of an asteroid and is still in the process of forming. We show here that young dust bands retain information on the size distribution and cross-sectional area of dust released in the original asteroid disruption, before it is lost to orbital and collisional decay. We find that the Emilkowalski cluster is the source of this partial band and that the dust released in the disruption would correspond to a regolith layer similar to 3 m deep on the similar to 10 km diameter source body's surface. The dust in this band is described by a cumulative size-distribution inverse power-law index with a lower bound of 2.1 (implying domination of cross-sectional area by small particles) for dust particles with diameters ranging from a few mu m up to a few cm. The coadded observations show that the thermal emission of the dust band structure is dominated by large (mm-cm size) particles. We find that dust particle ejection velocities need to be a few times the escape velocity of the Emilkowalski cluster source body to provide a good fit to the inclination dispersion of the observations. We discuss the implications that such a significant release of material during a disruption has for the temporal evolution of the structure, composition, and magnitude of the zodiacal cloud

    A Secure Fog-based Platform for SCADA-based IoT Critical Infrastructure

    Get PDF
    The rapid proliferation of Internet of Things (IoT) devices, such as smart meters and water valves, into industrial critical infrastructures and control systems has put stringent performance and scalability requirements on modern Supervisory Control and Data Acquisition (SCADA) systems. While cloud computing has enabled modern SCADA systems to cope with the increasing amount of data generated by sensors, actuators and control devices, there has been a growing interest recently to deploy edge datacenters in fog architectures to secure low-latency and enhanced security for mission-critical data. However, fog security and privacy for SCADA-based IoT critical infrastructures remains an under-researched area. To address this challenge, this contribution proposes a novel security “toolbox” to reinforce the integrity, security, and privacy of SCADA-based IoTcritical infrastructure at the fog layer. The toolbox incorporates a key feature: a cryptographic-based access approach to the cloud services using identity-based cryptography and signature schemes at the fog layer. We present the implementation details of a prototype for our proposed Secure Fog-based Platform (SeFoP) and provide performance evaluation results to demonstrate the appropriateness of the proposed platform in a real-world scenario. These results can pave the way towards the development of more secured and trusted SCADA-based IoT critical infrastructure, which is essential to counter cyber threats against next-generation critical infrastructure and industrial control systems. The results from the experiments demonstrate a superior performance of SeFoP, which is around 2.8 seconds when adding 5 virtual machines (VMs), 3.2 seconds when adding 10 VMs, and 112 seconds when adding 1000 VMs compared to Multi-Level user Access Control (MLAC) platform

    Atmospheric Circulation and Tides of "51Peg b-like" Planets

    Get PDF
    We examine the properties of the atmospheres of extrasolar giant planets at orbital distances smaller than 0.1 AU from their stars. We show that these ``51Peg b-like'' planets are rapidly synchronized by tidal interactions, but that small departures from synchronous rotation can occur because of fluid-dynamical torques within these planets. Previous radiative-transfer and evolution models of such planets assume a homogeneous atmosphere. Nevertheless, we show using simple arguments that, at the photosphere, the day-night temperature difference and characteristic wind speeds may reach ~500 K and ~2 km/s, respectively. Substantial departures from chemical equilibrium are expected. The cloud coverage depends sensitively on the dynamics; clouds could exist predominantly either on the dayside or nightside, depending on the circulation regime. Radiative-transfer models that assume homogeneous conditions are therefore inadequate in describing the atmospheric properties of 51Peg b-like planets. We present preliminary three-dimensional, nonlinear simulations of the atmospheric circulation of HD209458b that indicate plausible patterns for the circulation and generally agree with our simpler estimates. Furthermore, we show that kinetic energy production in the atmosphere can lead to the deposition of substantial energy in the interior, with crucial consequences for the evolution of these planets. Future measurements of reflected and thermally-emitted radiation from these planets will help test our ideas.Comment: 14 pages, 8 figures. A&A, in press. Also available at http://www.obs-nice.fr/guillot/pegasi-planets

    The Internet of Things: Challenges and considerations for cybercrime investigations and digital forensics

    Get PDF
    The Internet of Things (IoT) represents the seamless merging of the real and digital world, with new devices created that store and pass around data. Processing large quantities of IoT data will proportionately increase workloads of data centres, leaving providers facing new security, capacity and analytics challenges. Handling this data conveniently is a critical challenge, as the overall application performance is highly dependent on the properties of the data management service. This paper explores the challenges posed by cybercrime investigations and digital forensics concerning the shifting landscape of crime – the IoT and the evident investigative complexity – moving to the Internet of Anything (IoA)/Internet of Everything (IoE) era. IoT forensics requires a multi-faceted approach where evidence may be collected from a variety of sources such as sensor devices, communication devices, fridges, cars and drones, to smart swarms and intelligent buildings

    Debris disk size distributions: steady state collisional evolution with P-R drag and other loss processes

    Full text link
    We present a new scheme for determining the shape of the size distribution, and its evolution, for collisional cascades of planetesimals undergoing destructive collisions and loss processes like Poynting-Robertson drag. The scheme treats the steady state portion of the cascade by equating mass loss and gain in each size bin; the smallest particles are expected to reach steady state on their collision timescale, while larger particles retain their primordial distribution. For collision-dominated disks, steady state means that mass loss rates in logarithmic size bins are independent of size. This prescription reproduces the expected two phase size distribution, with ripples above the blow-out size, and above the transition to gravity-dominated planetesimal strength. The scheme also reproduces the expected evolution of disk mass, and of dust mass, but is computationally much faster than evolving distributions forward in time. For low-mass disks, P-R drag causes a turnover at small sizes to a size distribution that is set by the redistribution function (the mass distribution of fragments produced in collisions). Thus information about the redistribution function may be recovered by measuring the size distribution of particles undergoing loss by P-R drag, such as that traced by particles accreted onto Earth. Although cross-sectional area drops with 1/age^2 in the PR-dominated regime, dust mass falls as 1/age^2.8, underlining the importance of understanding which particle sizes contribute to an observation when considering how disk detectability evolves. Other loss processes are readily incorporated; we also discuss generalised power law loss rates, dynamical depletion, realistic radiation forces and stellar wind drag.Comment: Accepted for publication by Celestial Mechanics and Dynamical Astronomy (special issue on EXOPLANETS

    Men, maternity and moral residue:negotiating the moral demands of the transition to first time fatherhood

    Get PDF
    This article discusses men's transition to first time fatherhood, with a focus on the way they recognise various in-tension moral demands and negotiate an appropriate role for themselves. The findings are taken from a longitudinal study, drawing on elements of grounded theory, comprising a series of face-to-face and telephone interviews with 11 men over a 9-month period from the 12(th) week of pregnancy to 8 weeks after the birth. The analysis focuses on men's feelings and experience of exclusion and participation, and their response and reaction to that experience. The findings present two descriptive themes, ‘on the inside looking in’ and ‘present but not participating’, followed by third theme ‘deference and support: a moral response’ that exposes the dilemmatic nature of men's experience and explains the participants’ apparent acceptance of being less involved. The discussion explores the concept of moral residue, arguing that while deference and support may be an appropriate role for fathers in the perinatal period it may also be a compromise that leads to feelings of uncertainty and frustration, which is a consequence of being in a genuinely dilemmatic situation

    A peculiar class of debris disks from Herschel/DUNES - A steep fall off in the far infrared

    Get PDF
    Aims. We present photometric data of debris disks around HIP 103389 (HD 199260), HIP 107350 (HN Peg, HD206860), and HIP 114948 (HD 219482), obtained in the context of our Herschel Open Time Key Program DUNES (DUst around NEarby Stars). Methods. We used Herschel/PACS to detect the thermal emission of the three debris disks with a 3 sigma sensitivity of a few mJy at 100 um and 160 um. In addition, we obtained Herschel/PACS photometric data at 70 um for HIP 103389. Two different approaches are applied to reduce the Herschel data to investigate the impact of data reduction on the photometry. We fit analytical models to the available spectral energy distribution (SED) data. Results. The SEDs of the three disks potentially exhibit an unusually steep decrease at wavelengths > 70 um. We investigate the significance of the peculiar shape of these SEDs and the impact on models of the disks provided it is real. Our modeling reveals that such a steep decrease of the SEDs in the long wavelength regime is inconsistent with a power-law exponent of the grain size distribution -3.5 expected from a standard equilibrium collisional cascade. In contrast, a very distinct range of grain sizes is implied to dominate the thermal emission of such disks. However, we demonstrate that the understanding of the data of faint sources obtained with Herschel is still incomplete and that the significance of our results depends on the version of the data reduction pipeline used. Conclusions. A new mechanism to produce the dust in the presented debris disks, deviations from the conditions required for a standard equilibrium collisional cascade (grain size exponent of -3.5), and/or significantly different dust properties would be necessary to explain the potentially steep SED shape of the three debris disks presented. (abridged)Comment: 14 pages, 4 figures, accepted by A&
    • 

    corecore