69 research outputs found
Non Abelian gauge symmetries induced by the unobservability of extra-dimensions in a Kaluza-Klein approach
In this work we deal with the extension of the Kaluza-Klein approach to a
non-Abelian gauge theory; we show how we need to consider the link between the
n-dimensional model and a four-dimensional observer physics, in order to
reproduce fields equations and gauge transformations in the four-dimensional
picture. More precisely, in fields equations any dependence on
extra-coordinates is canceled out by an integration, as consequence of the
unobservability of extra-dimensions. Thus, by virtue of this extra-dimensions
unobservability, we are able to recast the multidimensional Einstein equations
into the four-dimensional Einstein-Yang-Mills ones, as well as all the right
gauge transformations of fields are induced. The same analysis is performed for
the Dirac equation describing the dynamics of the matter fields and, again, the
gauge coupling with Yang-Mills fields are inferred from the multidimensional
free fields theory, together with the proper spinors transformations.Comment: 5 pages, no figures, to appear in Mod. Phys. Lett.
The picture of the Bianchi I model via gauge fixing in Loop Quantum Gravity
The implications of the SU(2) gauge fixing associated with the choice of
invariant triads in Loop Quantum Cosmology are discussed for a Bianchi I model.
In particular, via the analysis of Dirac brackets, it is outlined how the
holonomy-flux algebra coincides with the one of Loop Quantum Gravity if paths
are parallel to fiducial vectors only. This way the quantization procedure for
the Bianchi I model is performed by applying the techniques developed in Loop
Quantum Gravity but restricting the admissible paths. Furthermore, the local
character retained by the reduced variables provides a relic diffeomorphisms
constraint, whose imposition implies homogeneity on a quantum level. The
resulting picture for the fundamental spatial manifold is that of a cubical
knot with attached SU(2) irreducible representations. The discretization of
geometric operators is outlined and a new perspective for the super-Hamiltonian
regularization in Loop Quantum Cosmology is proposed.Comment: 6 page
Low-energy sector of 8-dimensional General Relativity: Electro-Weak model and neutrino mass
In a Kaluza-Klein space-time , we demonstrate that the
dimensional reduction of spinors provides a 4-field, whose associated SU(2)
gauge connections are geometrized. However, additional and gauge-violating
terms arise, but they are highly suppressed by a factor , which fixes
the amount of the spinor dependence on extra-coordinates. The application of
this framework to the Electro-Weak model is performed, thus giving a lower
bound for from the request of the electric charge conservation.
Moreover, we emphasize that also the Higgs sector can be reproduced, but
neutrino masses are predicted and the fine-tuning on the Higgs parameters can
be explained, too.Comment: 14 pages, 1 figure, to appear on Int. J. Mod. Phys.
Towards Loop Quantum Gravity without the time gauge
The Hamiltonian formulation of the Holst action is reviewed and it is
provided a solution of second-class constraints corresponding to a generic
local Lorentz frame. Within this scheme the form of rotation constraints can be
reduced to a Gauss-like one by a proper generalization of
Ashtekar-Barbero-Immirzi connections. This result emphasizes that the Loop
Quantum Gravity quantization procedure can be applied when the time-gauge
condition does not stand.Comment: 5 pages, accepted for publication in Phys. Rev. Let
A critical analysis of the cosmological implementation of Loop Quantum Gravity
This papers offers a critical discussion on the procedure by which Loop
Quantum Cosmology (LQC) is constructed from the full Loop Quantum Gravity (LQG)
theory. Revising recent issues in preserving SU(2) symmetry when quantizing the
isotropic Universe, we trace a new perspective in approaching the cosmological
problem within quantum geometry. The cosmological sector of LQG is reviewed and
a critical point of view on LQC is presented. It is outlined how a polymer-like
scale for quantum cosmology can be predicted from a proper fundamental graph
underlying the homogeneous and isotropic continuous picture. However, such a
minimum scale does not coincide with the choice made in LQC. Finally, the
perspectives towards a consistent cosmological LQG model based on such a graph
structure are discussed.Comment: 11 pages, accepted for publication in Modern Physics Letters
Shortcomings of the Big Bounce derivation in Loop Quantum Cosmology
We give a prescription to define in Loop Quantum Gravity the electric field
operator related to the scale factor of an homogeneous and isotropic
cosmological space-time. This procedure allows to link the fundamental theory
with its cosmological implementation. In view of the conjugate relation
existing between holonomies and fluxes, the edge length and the area of
surfaces in the fiducial metric satisfy a duality condition. As a consequence,
the area operator has a discrete spectrum also in Loop Quantum Cosmology. This
feature makes the super-Hamiltonian regularization an open issue of the whole
formulation.Comment: 4 pages, accepted for publication in Phys. Rev. D as a Rapid
Communicatio
Elementary particle interaction from a Kaluza-Klein scheme
We discuss properties of particles and fields in a multi-dimensional
space-time, where the geometrization of gauge interactions can be performed. As
far as spinors are concerned, we outline how the gauge coupling can be
recognized by a proper dependence on extra-coordinates and by the dimensional
reduction procedure. Finally applications to the Electro-Weak model are
presented.Comment: 8 pages, Proceedings of the II Stueckelberg worksho
Implications of the gauge-fixing in Loop Quantum Cosmology
The restriction to invariant connections in a Friedmann-Robertson-Walker
space-time is discussed via the analysis of the Dirac brackets associated with
the corresponding gauge fixing. This analysis allows us to establish the proper
correspondence between reduced and un-reduced variables. In this respect, it is
outlined how the holonomy-flux algebra coincides with the one of Loop Quantum
Gravity if edges are parallel to simplicial vectors and the quantization of the
model is performed via standard techniques by restricting admissible paths.
Within this scheme, the discretization of the area spectrum is emphasized.
Then, the role of the diffeomorphisms generator in reduced phase-space is
investigated and it is clarified how it implements homogeneity on quantum
states, which are defined over cubical knots. Finally, the perspectives for a
consistent dynamical treatment are discussed.Comment: 7 pages, accepted for publication in Physical Review
Matter in Loop Quantum Gravity without time gauge: a non-minimally coupled scalar field
We analyze the phase space of gravity non-minimally coupled to a scalar field
in a generic local Lorentz frame. We reduce the set of constraints to a
first-class one by fixing a specific hypersurfaces in the phase space. The main
issue of our analysis is to extend the features of the vacuum case to the
presence of scalar matter by recovering the emergence of an SU(2) gauge
structure and the non-dynamical role of boost variables. Within this scheme,
the super-momentum and the super-Hamiltonian are those ones associated with a
scalar field minimally coupled to the metric in the Einstein frame. Hence, the
kinematical Hilbert space is defined as in canonical Loop Quantum Gravity with
a scalar field, but the differences in the area spectrum are outlined to be the
same as in the time-gauge approach.Comment: 6 page
Dirac equations in curved space-time versus Papapetrou spinning particles
We find out classical particles, starting from Dirac quantum fields on a
curved space-time, by an eikonal approximation and a localization hypothesis
for amplitudes. We recover the results by Mathisson-Papapetrou, hence
establishing a fundamental correspondence between the coupling of classical and
quantum spinning particles with the gravitational field.Comment: 6 pages, 1 figure, accepted for publication in Europhysics Letter
- …