57,515 research outputs found
Thermodynamics of Information Processing Based on Enzyme Kinetics: an Exactly Solvable Model of Information Pump
Motivated by the recent proposed models of the information engine [D. Mandal
and C. Jarzynski, Proc. Natl. Acad. Sci. 109, 11641 (2012)] and the information
refrigerator [D. Mandal, H. T. Quan, and C. Jarzynski, Phys. Rev. Lett. 111,
030602 (2013)], we propose a minimal model of the information pump and the
information eraser based on enzyme kinetics. This device can either pump
molecules against the chemical potential gradient by consuming the information
encoded in the bit stream or (partially) erase the information encoded in the
bit stream by consuming the Gibbs free energy. The dynamics of this model is
solved exactly, and the "phase diagram" of the operation regimes is determined.
The efficiency and the power of the information machine is analyzed. The
validity of the second law of thermodynamics within our model is clarified. Our
model offers a simple paradigm for the investigating of the thermodynamics of
information processing involving the chemical potential in small systems
Double-layer Perfect Metamaterial Absorber and Its Application for RCS Reduction of Antenna
To reduce the radar cross section (RCS) of a circularly polarized (CP) tilted beam antenna, a double-layer perfect metamaterial absorber (DLPMA) in the microwave frequency is proposed. The DLPMA exhibits a wider band by reducing the distance between the three absorption peaks. Absorbing characteristics are analyzed and the experimental results demonstrate that the proposed absorber works well from 5.95 GHz to 6.86 GHz (relative bandwidth 14.1%) with the thickness of 0.5 mm. Then, the main part of perfect electric conductor ground plane of the CP tilted beam antenna is covered by the DLPMA. Simu¬lated and experimental results reveal that the novel antenna performs well from 5.5 GHz to 7 GHz, and its monostatic RCS is reduced significantly from 5.8 GHz to 7 GHz. The agreement between measured and simulated data validates the present design
Transverse momentum dependence in the perturbative calculation of pion form factor
By reanalysing transverse momentum dependence in the perturbative calculation
of pion form factor an improved expression of pion form factor which takes into
account the transverse momentum dependenc in hard scattering amplitude and
intrinsic transverse momentum dependence associated with pion wave functions is
given to leading order, which is available for momentum transfers of the order
of a few GeV as well as for . Our scheme can be extended to
evaluate the contributions to the pion form factor beyond leading order.Comment: 13 pages in LaTeX, plus 3 Postscript figure
Performance Analysis of a Novel GPU Computation-to-core Mapping Scheme for Robust Facet Image Modeling
Though the GPGPU concept is well-known
in image processing, much more work remains to be done
to fully exploit GPUs as an alternative computation
engine. This paper investigates the computation-to-core
mapping strategies to probe the efficiency and scalability
of the robust facet image modeling algorithm on GPUs.
Our fine-grained computation-to-core mapping scheme
shows a significant performance gain over the standard
pixel-wise mapping scheme. With in-depth performance
comparisons across the two different mapping schemes,
we analyze the impact of the level of parallelism on
the GPU computation and suggest two principles for
optimizing future image processing applications on the
GPU platform
Fake View Analytics in Online Video Services
Online video-on-demand(VoD) services invariably maintain a view count for
each video they serve, and it has become an important currency for various
stakeholders, from viewers, to content owners, advertizers, and the online
service providers themselves. There is often significant financial incentive to
use a robot (or a botnet) to artificially create fake views. How can we detect
the fake views? Can we detect them (and stop them) using online algorithms as
they occur? What is the extent of fake views with current VoD service
providers? These are the questions we study in the paper. We develop some
algorithms and show that they are quite effective for this problem.Comment: 25 pages, 15 figure
Andreev Edge State on Semi-Infinite Triangular Lattice: Detecting the Pairing Symmetry in Na_0.35CoO_2.yH_2O
We study the Andreev edge state on the semi-infinite triangular lattice with
different pairing symmetries and boundary topologies. We find a rich phase
diagram of zero energy Andreev edge states that is a unique fingerprint of each
of the possible pairing symmetries. We propose to pin down the pairing symmetry
in recently discovered Na_xCoO_2 material by the Fourier-transformed scanning
tunneling spectroscopy for the edge state. A surprisingly rich phase diagram is
found and explained by a general gauge argument and mapping to 1D tight-binding
model. Extensions of this work are discussed at the end.Comment: 4 pages, 1 table, 4 figure
- …