6,448 research outputs found
Hybrid Focal Stereo Networks for Pattern Analysis in Homogeneous Scenes
In this paper we address the problem of multiple camera calibration in the
presence of a homogeneous scene, and without the possibility of employing
calibration object based methods. The proposed solution exploits salient
features present in a larger field of view, but instead of employing active
vision we replace the cameras with stereo rigs featuring a long focal analysis
camera, as well as a short focal registration camera. Thus, we are able to
propose an accurate solution which does not require intrinsic variation models
as in the case of zooming cameras. Moreover, the availability of the two views
simultaneously in each rig allows for pose re-estimation between rigs as often
as necessary. The algorithm has been successfully validated in an indoor
setting, as well as on a difficult scene featuring a highly dense pilgrim crowd
in Makkah.Comment: 13 pages, 6 figures, submitted to Machine Vision and Application
Moving Forward 21st Century Pathways to Strengthen the Ocean Science Workforce Through Graduate Education and Professional Development
The scope of emerging national and international ocean-related issues facing society demands that we develop broad perspectives on graduate education and training in the ocean sciences. A multifaceted ocean workforce and new kinds of intellectual partnerships are needed to address ocean science research priorities, strengthen our understanding of coupled human-natural ocean systems, engage and inform public policy and management decision making, and increase ocean literacy. Alumni from graduate programs in ocean sciences are following diverse career paths in academia, government, nongovernmental organizations, and industry, and thus can inform us about the diverse skills needed to succeed. The ocean science academic community should build on its current strengths (e.g., multidisciplinary and multi-institutional research and education, international partnerships), and capitalize on what some might view as limitations (e.g., remote, yet inviting, coastal campuses, diversity of ocean science programs), to become an incubator of innovation that will advance the field and strengthen graduate education and training. Partnerships within and among institutions with ocean-related programs, and with professional societies, employers, and others, can help us provide cutting-edge, relevant academic options, facilitate professional development, and proactively position graduates for career paths that reflect and address important societal needs
Trends in Cholera Epidemiology
Codeço and Coelho discuss a new study on cholera modeling that helps us to better explain the observed epidemic pattern of the disease
Development of alkaline electrochemical characteristics demonstrates soil formation in bauxite residue undergoing natural rehabilitation
Mining and mineral processing industries have generated a large amount of polymineral wastes, causing the destruction and degradation of huge areas of landscapes at extensive geographical locations. Rehabilitation of these mine waste landscapes is critical to social and economic sustainability of mining and metallurgy operations, such as alumina refineries. The Bayer process to refine alumina generates large amounts of highly alkaline bauxite residues which are hazardous to plant growth. Innovative methodologies are urgently needed to address this economic and environmental challenge, one of which is soil formation from bauxite residues. Mineral weathering appears the prerequisite to the initiation of soil formation and development of functional soil properties in BRDAs. The present study investigated natural changes of mineralogy, zeta potential, isoelectric point, surface protonation, active alkaline groups and associated implications for rehabilitation of the BRDA. Alkaline calcite, hydrogarnet and sodalite minerals were slowly transformed or dissolved with declining levels over weathering time. Amorphous and semi-amorphous minerals also decreased with a corresponding decrease in BET and sorption sites. Zeta potential curve of fresh residue had steeper slope, than those of aged residues. The IEP of fresh residue was significantly higher, but those of aged residues were significantly lower, with a significant decrease of IEP with increasing time. These attributes in mineralogy and electrochemical characteristics such as transformation of alkaline minerals, and decreases of surface protonation and active alkaline groups, may be used to help the assessment of soil formation status in the bauxite residues of different age and associated rehabilitation requirements
Information Theory based on Non-additive Information Content
We generalize the Shannon's information theory in a nonadditive way by
focusing on the source coding theorem. The nonadditive information content we
adopted is consistent with the concept of the form invariance structure of the
nonextensive entropy. Some general properties of the nonadditive information
entropy are studied, in addition, the relation between the nonadditivity
and the codeword length is pointed out.Comment: 9 pages, no figures, RevTex, accepted for publication in Phys. Rev.
E(an error in proof of theorem 1 was corrected, typos corrected
Nature versus Nurture: The curved spine of the galaxy cluster X-ray luminosity -- temperature relation
The physical processes that define the spine of the galaxy cluster X-ray
luminosity -- temperature (L-T) relation are investigated using a large
hydrodynamical simulation of the Universe. This simulation models the same
volume and phases as the Millennium Simulation and has a linear extent of 500
h^{-1} Mpc. We demonstrate that mergers typically boost a cluster along but
also slightly below the L-T relation. Due to this boost we expect that all of
the very brightest clusters will be near the peak of a merger. Objects from
near the top of the L-T relation tend to have assembled much of their mass
earlier than an average halo of similar final mass. Conversely, objects from
the bottom of the relation are often experiencing an ongoing or recent merger.Comment: 8 pages, 7 figures, submitted to MNRA
Joint Optical Flow and Temporally Consistent Semantic Segmentation
The importance and demands of visual scene understanding have been steadily
increasing along with the active development of autonomous systems.
Consequently, there has been a large amount of research dedicated to semantic
segmentation and dense motion estimation. In this paper, we propose a method
for jointly estimating optical flow and temporally consistent semantic
segmentation, which closely connects these two problem domains and leverages
each other. Semantic segmentation provides information on plausible physical
motion to its associated pixels, and accurate pixel-level temporal
correspondences enhance the accuracy of semantic segmentation in the temporal
domain. We demonstrate the benefits of our approach on the KITTI benchmark,
where we observe performance gains for flow and segmentation. We achieve
state-of-the-art optical flow results, and outperform all published algorithms
by a large margin on challenging, but crucial dynamic objects.Comment: 14 pages, Accepted for CVRSUAD workshop at ECCV 201
- …