16,640 research outputs found
Acoustic transducer apparatus with reduced thermal conduction
A horn is described for transmitting sound from a transducer to a heated chamber containing an object which is levitated by acoustic energy while it is heated to a molten state, which minimizes heat transfer to thereby minimize heating of the transducer, minimize temperature variation in the chamber, and minimize loss of heat from the chamber. The forward portion of the horn, which is the portion closest to the chamber, has holes that reduce its cross-sectional area to minimize the conduction of heat along the length of the horn, with the entire front portion of the horn being rigid and having an even front face to efficiently transfer high frequency acoustic energy to fluid in the chamber. In one arrangement, the horn has numerous rows of holes extending perpendicular to the length of horn, with alternate rows extending perpendicular to one another to form a sinuous path for the conduction of heat along the length of the horn
Search for Narrow-Width ttbar Resonances in ppbar Collisions at center of mass energy = 1.8 TeV
We present a preliminary result on a search for narrow-width resonances that
decay into ttbar pairs using 130 pb^{-1} of lepton plus jets data in ppbar
collisions at center of mass energy = 1.8 TeV. No significant deviation from
Standard Model prediction is observed. 95% C.L. upper limits on the production
cross section of the narrow-width resonance times its branching fraction to
ttbar are presented for different resonance masses, M_X. We also exclude the
existence of a leptophobic topcolor particle, X, with M_X < 560 GeV/c^2 for a
width \Gamma_X = 0.012 M_X.Comment: 3 pages, 1 figure; Submitted for proceedings of 5th International
Conference on Quark Confinement and Hadron spectrum, held in Italy, from
11-14 Sep., 200
Modulational instability in binary spin-orbit-coupled Bose-Einstein condensates
We study modulation instability (MI) of flat states in two-component
spin-orbit-coupled (SOC) Bose-Einstein condensates (BECs) in the framework of
coupled Gross-Pitaevskii equations for two components of the pseudospinor wave
function. The analysis is performed for equal densities of the components.
Effects of the interaction parameters, Rabi coupling, and SOC on the MI are
investigated. In particular, the results demonstrate that the SOC strongly
alters the commonly known MI (immiscibility) condition, ,
for the binary superfluid with coefficients and of the
intra- and interspecies repulsive interactions. In fact, the binary BEC is
always subject to the MI under the action of the SOC, which implies that the
ground state of the system is plausibly represented by a striped phase
Science of Armour Materials
This article discusses some basic principles that underlie design of effective armour materials against various modes of attack
Analysis of high load dampers
High load damping requirements for modern jet engines are discussed. The design of damping systems which could satisfy these requirements is also discusseed. In order to evaluate high load damping requirements, engines in three major classes were studied; large transport engines, small general aviation engines, and military engines. Four damper concepts applicable to these engines were evaluated; multi-ring, cartridge, curved beam, and viscous/friction. The most promising damper concept was selected for each engine and performance was assessed relative to conventional dampers and in light of projected damping requirements for advanced jet engines
Statistical Studies of Giant Pulse Emission from the Crab Pulsar
We have observed the Crab pulsar with the Deep Space Network (DSN) Goldstone
70 m antenna at 1664 MHz during three observing epochs for a total of 4 hours.
Our data analysis has detected more than 2500 giant pulses, with flux densities
ranging from 0.1 kJy to 150 kJy and pulse widths from 125 ns (limited by our
bandwidth) to as long as 100 microseconds, with median power amplitudes and
widths of 1 kJy and 2 microseconds respectively. The most energetic pulses in
our sample have energy fluxes of approximately 100 kJy-microsecond. We have
used this large sample to investigate a number of giant-pulse emission
properties in the Crab pulsar, including correlations among pulse flux density,
width, energy flux, phase and time of arrival. We present a consistent
accounting of the probability distributions and threshold cuts in order to
reduce pulse-width biases. The excellent sensitivity obtained has allowed us to
probe further into the population of giant pulses. We find that a significant
portion, no less than 50%, of the overall pulsed energy flux at our observing
frequency is emitted in the form of giant pulses.Comment: 19 pages, 17 figures; to be published in Astrophysical Journa
Decoding Strategies at the Relay with Physical-Layer Network Coding
Cataloged from PDF version of article.A two-way relay channel is considered where two
users exchange information via a common relay in two transmission
phases using physical-layer network coding (PNC). We consider
an optimal decoding strategy at the relay to decode the network
coded sequence during the first transmission phase, which is
approximately implemented using a list decoding (LD) algorithm.
The algorithm jointly decodes the codewords transmitted by
the two users and sorts the L most likely pair of sequences
in the order of decreasing a-posteriori probabilities, based on
which, estimates of the most likely network coded sequences and
the decoding results are obtained. Using several examples, it is
observed that a lower complexity alternative, that jointly decodes
the two transmitted codewords, has a performance similar to the
LD based decoding and offers a near-optimal performance in
terms of the error rates corresponding to the XOR of the two
decoded sequences. To analyze the error rate at the relay, an
analytical approximation of the word-error rate using the joint
decoding (JD) scheme is evaluated over an AWGN channel using
an approach that remains valid for the general case of two users
adopting different codebooks and using different power levels.
We further extend our study to frequency selective channels
where two decoding approaches at the relay are investigated,
namely; a trellis based joint channel detector/physical-layer
network coded sequence decoder (JCD/PNCD) which is shown
to offer a near-optimal performance, and a reduced complexity
channel detection based on a linear receiver with minimum mean
squared error (MMSE) criterion which is particularly useful
where the number of channel taps is large
- …