59 research outputs found
Detection of air trapping in chronic obstructive pulmonary disease by low frequency ultrasound
<p>Abstract</p> <p>Background</p> <p>Spirometry is regarded as the gold standard for the diagnosis of COPD, yet the condition is widely underdiagnosed. Therefore, additional screening methods that are easy to perform and to interpret are needed. Recently, we demonstrated that low frequency ultrasound (LFU) may be helpful for monitoring lung diseases. The objective of this study was to evaluate whether LFU can be used to detect air trapping in COPD. In addition, we evaluated the ability of LFU to detect the effects of short-acting bronchodilator medication.</p> <p>Methods</p> <p>Seventeen patients with COPD and 9 healthy subjects were examined by body plethysmography and LFU. Ultrasound frequencies ranging from 1 to 40 kHz were transmitted to the sternum and received at the back during inspiration and expiration. The high pass frequency was determined from the inspiratory and the expiratory signals and their difference termed ΔF. Measurements were repeated after inhalation of salbutamol.</p> <p>Results</p> <p>We found significant differences in ΔF between COPD subjects and healthy subjects. These differences were already significant at GOLD stage 1 and increased with the severity of COPD. Sensitivity for detection of GOLD stage 1 was 83% and for GOLD stages worse than 1 it was 91%. Bronchodilator effects could not be detected reliably.</p> <p>Conclusions</p> <p>We conclude that low frequency ultrasound is cost-effective, easy to perform and suitable for detecting air trapping. It might be useful in screening for COPD.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01080924">NCT01080924</a></p
Genomotyping of Coxiella burnetii Using Microarrays Reveals a Conserved Genomotype for Hard Tick Isolates
C. burnetii is a Gram-negative intracellular Y-proteobacteria that causes the zoonotic disease Q fever. Q fever can manifest as an acute or chronic illness. Different typing methods have been previously developed to classify C. burnetii isolates to explore its pathogenicity. Here, we report a comprehensive genomotyping method based on the presence or absence of genes using microarrays. The genomotyping method was then tested in 52 isolates obtained from different geographic areas, different hosts and patients with different clinical manifestations. The analysis revealed the presence of 10 genomotypes organized into 3 groups, with a topology congruent with that obtained through multi-spacer typing. We also found that only 4 genomotypes were specifically associated with acute Q fever, whereas all of the genomotypes could be associated to chronic human infection. Serendipitously, the genomotyping results revealed that all hard tick isolates, including the Nine Mile strain, belong to the same genomotype
miR-199a-5p Is Upregulated during Fibrogenic Response to Tissue Injury and Mediates TGFbeta-Induced Lung Fibroblast Activation by Targeting Caveolin-1
As miRNAs are associated with normal cellular processes, deregulation of miRNAs is thought to play a causative role in many complex diseases. Nevertheless, the precise contribution of miRNAs in fibrotic lung diseases, especially the idiopathic form (IPF), remains poorly understood. Given the poor response rate of IPF patients to current therapy, new insights into the pathogenic mechanisms controlling lung fibroblasts activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies for this devastating disease. To identify miRNAs with potential roles in lung fibrogenesis, we performed a genome-wide assessment of miRNA expression in lungs from two different mouse strains known for their distinct susceptibility to develop lung fibrosis after bleomycin exposure. This led to the identification of miR-199a-5p as the best miRNA candidate associated with bleomycin response. Importantly, miR-199a-5p pulmonary expression was also significantly increased in IPF patients (94 IPF versus 83 controls). In particular, levels of miR-199a-5p were selectively increased in myofibroblasts from injured mouse lungs and fibroblastic foci, a histologic feature associated with IPF. Therefore, miR-199a-5p profibrotic effects were further investigated in cultured lung fibroblasts: miR-199a-5p expression was induced upon TGFβ exposure, and ectopic expression of miR-199a-5p was sufficient to promote the pathogenic activation of pulmonary fibroblasts including proliferation, migration, invasion, and differentiation into myofibroblasts. In addition, we demonstrated that miR-199a-5p is a key effector of TGFβ signaling in lung fibroblasts by regulating CAV1, a critical mediator of pulmonary fibrosis. Remarkably, aberrant expression of miR-199a-5p was also found in unilateral ureteral obstruction mouse model of kidney fibrosis, as well as in both bile duct ligation and CCl4-induced mouse models of liver fibrosis, suggesting that dysregulation of miR-199a-5p represents a general mechanism contributing to the fibrotic process. MiR-199a-5p thus behaves as a major regulator of tissue fibrosis with therapeutic potency to treat fibroproliferative diseases. © 2013 Lino Cardenas et al
Chronic lung diseases are associated with gene expression programs favoring SARS-CoV-2 entry and severity
Patients with chronic lung disease (CLD) have an increased risk for severe coronavirus disease-19 (COVID-19) and poor outcomes. Here, we analyze the transcriptomes of 611,398 single cells isolated from healthy and CLD lungs to identify molecular characteristics of lung cells that may account for worse COVID-19 outcomes in patients with chronic lung diseases. We observe a similar cellular distribution and relative expression of SARS-CoV-2 entry factors in control and CLD lungs. CLD AT2 cells express higher levels of genes linked directly to the efficiency of viral replication and the innate immune response. Additionally, we identify basal differences in inflammatory gene expression programs that highlight how CLD alters the inflammatory microenvironment encountered upon viral exposure to the peripheral lung. Our study indicates that CLD is accompanied by changes in cell-type-specific gene expression programs that prime the lung epithelium for and influence the innate and adaptive immune responses to SARS-CoV-2 infection
Identification of Keratinocyte Growth Factor as a Target of microRNA-155 in Lung Fibroblasts: Implication in Epithelial-Mesenchymal Interactions
International audienceBACKGROUND: Epithelial-mesenchymal interactions are critical in regulating many aspects of vertebrate embryo development, and for the maintenance of homeostatic equilibrium in adult tissues. The interactions between epithelium and mesenchyme are believed to be mediated by paracrine signals such as cytokines and extracellular matrix components secreted from fibroblasts that affect adjacent epithelia. In this study, we sought to identify the repertoire of microRNAs (miRNAs) in normal lung human fibroblasts and their potential regulation by the cytokines TNF-alpha, IL-1beta and TGF-beta. METHODOLOGY/PRINCIPAL FINDINGS: MiR-155 was significantly induced by inflammatory cytokines TNF-alpha and IL-1beta while it was down-regulated by TGF-beta. Ectopic expression of miR-155 in human fibroblasts induced modulation of a large set of genes related to "cell to cell signalling", "cell morphology" and "cellular movement". This was consistent with an induction of caspase-3 activity and with an increase in cell migration in fibroblasts tranfected with miR-155. Using different miRNA bioinformatic target prediction tools, we found a specific enrichment for miR-155 predicted targets among the population of down-regulated transcripts. Among fibroblast-selective targets, one interesting hit was keratinocyte growth factor (KGF, FGF-7), a member of the fibroblast growth factor (FGF) family, which owns two potential binding sites for miR-155 in its 3'-UTR. Luciferase assays experimentally validated that miR-155 can efficiently target KGF 3'-UTR. Site-directed mutagenesis revealed that only one out of the 2 potential sites was truly functional. Functional in vitro assays experimentally validated that miR-155 can efficiently target KGF 3'-UTR. Furthermore, in vivo experiments using a mouse model of lung fibrosis showed that miR-155 expression level was correlated with the degree of lung fibrosis. CONCLUSIONS/SIGNIFICANCE: Our results strongly suggest a physiological function of miR-155 in lung fibroblasts. Altogether, this study implicates this miRNA in the regulation by mesenchymal cells of surrounding lung epithelium, making it a potential key player during tissue injury
An integrated cell atlas of the lung in health and disease
Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population. Here we present the integrated Human Lung Cell Atlas (HLCA), combining 49 datasets of the human respiratory system into a single atlas spanning over 2.4 million cells from 486 individuals. The HLCA presents a consensus cell type re-annotation with matching marker genes, including annotations of rare and previously undescribed cell types. Leveraging the number and diversity of individuals in the HLCA, we identify gene modules that are associated with demographic covariates such as age, sex and body mass index, as well as gene modules changing expression along the proximal-to-distal axis of the bronchial tree. Mapping new data to the HLCA enables rapid data annotation and interpretation. Using the HLCA as a reference for the study of disease, we identify shared cell states across multiple lung diseases, including SPP
An integrated cell atlas of the lung in health and disease
Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population. Here we present the integrated Human Lung Cell Atlas (HLCA), combining 49 datasets of the human respiratory system into a single atlas spanning over 2.4 million cells from 486 individuals. The HLCA presents a consensus cell type re-annotation with matching marker genes, including annotations of rare and previously undescribed cell types. Leveraging the number and diversity of individuals in the HLCA, we identify gene modules that are associated with demographic covariates such as age, sex and body mass index, as well as gene modules changing expression along the proximal-to-distal axis of the bronchial tree. Mapping new data to the HLCA enables rapid data annotation and interpretation. Using the HLCA as a reference for the study of disease, we identify shared cell states across multiple lung diseases, including SPP1+ profibrotic monocyte-derived macrophages in COVID-19, pulmonary fibrosis and lung carcinoma. Overall, the HLCA serves as an example for the development and use of large-scale, cross-dataset organ atlases within the Human Cell Atlas
- …