427 research outputs found

    Energy landscapes, lowest gaps, and susceptibility of elastic manifolds at zero temperature

    Full text link
    We study the effect of an external field on (1+1) and (2+1) dimensional elastic manifolds, at zero temperature and with random bond disorder. Due to the glassy energy landscape the configuration of a manifold changes often in abrupt, ``first order'' -type of large jumps when the field is applied. First the scaling behavior of the energy gap between the global energy minimum and the next lowest minimum of the manifold is considered, by employing exact ground state calculations and an extreme statistics argument. The scaling has a logarithmic prefactor originating from the number of the minima in the landscape, and reads ΔE1∼Lθ[ln⁡(LzL−ζ)]−1/2\Delta E_1 \sim L^\theta [\ln(L_z L^{-\zeta})]^{-1/2}, where ζ\zeta is the roughness exponent and θ\theta is the energy fluctuation exponent of the manifold, LL is the linear size of the manifold, and LzL_z is the system height. The gap scaling is extended to the case of a finite external field and yields for the susceptibility of the manifolds χtot∼L2D+1−θ[(1−ζ)ln⁡(L)]1/2\chi_{tot} \sim L^{2D+1-\theta} [(1-\zeta)\ln(L)]^{1/2}. We also present a mean field argument for the finite size scaling of the first jump field, h1∼Ld−θh_1 \sim L^{d-\theta}. The implications to wetting in random systems, to finite-temperature behavior and the relation to Kardar-Parisi-Zhang non-equilibrium surface growth are discussed.Comment: 20 pages, 22 figures, accepted for publication in Eur. Phys. J.

    A periodic elastic medium in which periodicity is relevant

    Get PDF
    We analyze, in both (1+1)- and (2+1)- dimensions, a periodic elastic medium in which the periodicity is such that at long distances the behavior is always in the random-substrate universality class. This contrasts with the models with an additive periodic potential in which, according to the field theoretic analysis of Bouchaud and Georges and more recently of Emig and Nattermann, the random manifold class dominates at long distances in (1+1)- and (2+1)-dimensions. The models we use are random-bond Ising interfaces in hypercubic lattices. The exchange constants are random in a slab of size Ld−1×λL^{d-1} \times \lambda and these coupling constants are periodically repeated along either {10} or {11} (in (1+1)-dimensions) and {100} or {111} (in (2+1)-dimensions). Exact ground-state calculations confirm scaling arguments which predict that the surface roughness ww behaves as: w∼L2/3,L≪Lcw \sim L^{2/3}, L \ll L_c and w∼L1/2,L≫Lcw \sim L^{1/2}, L \gg L_c, with Lc∼λ3/2L_c \sim \lambda^{3/2} in (1+1)(1+1)-dimensions and; w∼L0.42,L≪Lcw \sim L^{0.42}, L \ll L_c and w∼ln⁡(L),L≫Lcw \sim \ln(L), L \gg L_c, with Lc∼λ2.38L_c \sim \lambda^{2.38} in (2+1)(2+1)-dimensions.Comment: Submitted to Phys. Rev.

    Intermittence and roughening of periodic elastic media

    Get PDF
    We analyze intermittence and roughening of an elastic interface or domain wall pinned in a periodic potential, in the presence of random-bond disorder in (1+1) and (2+1) dimensions. Though the ensemble average behavior is smooth, the typical behavior of a large sample is intermittent, and does not self-average to a smooth behavior. Instead, large fluctuations occur in the mean location of the interface and the onset of interface roughening is via an extensive fluctuation which leads to a jump in the roughness of order Îť\lambda, the period of the potential. Analytical arguments based on extreme statistics are given for the number of the minima of the periodicity visited by the interface and for the roughening cross-over, which is confirmed by extensive exact ground state calculations.Comment: Accepted for publication in Phys. Rev.

    Phase transitions in a disordered system in and out of equilibrium

    Get PDF
    The equilibrium and non--equilibrium disorder induced phase transitions are compared in the random-field Ising model (RFIM). We identify in the demagnetized state (DS) the correct non-equilibrium hysteretic counterpart of the T=0 ground state (GS), and present evidence of universality. Numerical simulations in d=3 indicate that exponents and scaling functions coincide, while the location of the critical point differs, as corroborated by exact results for the Bethe lattice. These results are of relevance for optimization, and for the generic question of universality in the presence of disorder.Comment: Accepted for publication in Phys. Rev. Let

    Ground-States of Two Directed Polymers

    Full text link
    Joint ground states of two directed polymers in a random medium are investigated. Using exact min-cost flow optimization the true two-line ground-state is compared with the single line ground state plus its first excited state. It is found that these two-line configurations are (for almost all disorder configurations) distinct implying that the true two-line ground-state is non-separable, even with 'worst-possible' initial conditions. The effective interaction energy between the two lines scales with the system size with the scaling exponents 0.39 and 0.21 in 2D and 3D, respectively.Comment: 19 pages RevTeX, figures include

    Ground state optimization and hysteretic demagnetization: the random-field Ising model

    Get PDF
    We compare the ground state of the random-field Ising model with Gaussian distributed random fields, with its non-equilibrium hysteretic counterpart, the demagnetized state. This is a low energy state obtained by a sequence of slow magnetic field oscillations with decreasing amplitude. The main concern is how optimized the demagnetized state is with respect to the best-possible ground state. Exact results for the energy in d=1 show that in a paramagnet, with finite spin-spin correlations, there is a significant difference in the energies if the disorder is not so strong that the states are trivially almost alike. We use numerical simulations to better characterize the difference between the ground state and the demagnetized state. For d>=3 the random-field Ising model displays a disorder induced phase transition between a paramagnetic and a ferromagnetic state. The locations of the critical points R_c(DS), R_c(GS) differ for the demagnetized state and ground state. Consequently, it is in this regime that the optimization of the demagnetized stat is the worst whereas both deep in the paramagnetic regime and in the ferromagnetic one the states resemble each other to a great extent. We argue based on the numerics that in d=3 the scaling at the transition is the same in the demagnetized and ground states. This claim is corroborated by the exact solution of the model on the Bethe lattice, where the R_c's are also different.Comment: 13 figs. Submitted to Phys. Rev.

    How important tasks are performed: peer review

    Get PDF
    The advancement of various fields of science depends on the actions of individual scientists via the peer review process. The referees' work patterns and stochastic nature of decision making both relate to the particular features of refereeing and to the universal aspects of human behavior. Here, we show that the time a referee takes to write a report on a scientific manuscript depends on the final verdict. The data is compared to a model, where the review takes place in an ongoing competition of completing an important composite task with a large number of concurrent ones - a Deadline -effect. In peer review human decision making and task completion combine both long-range predictability and stochastic variation due to a large degree of ever-changing external “friction”.Peer reviewe

    Ground states versus low-temperature equilibria in random field Ising chains

    Full text link
    We discuss with the aid of random walk arguments and exact numerical computations the magnetization properties of one-dimensional random field chains. The ground state structure is explained in terms of absorbing and non-absorbing random walk excursions. At low temperatures, the magnetization profiles follow those of the ground states except at regions where a local random field fluctuation makes thermal excitations feasible. This follows also from the non-absorbing random walks, and implies that the magnetization length scale is a product of these two scales. It is not simply given by the Imry-Ma-like ground state domain size nor by the scale of the thermal excitations.Comment: 7 pages LaTeX, 8 eps-figures include

    Kinetic Roughening in Slow Combustion of Paper

    Get PDF
    Results of experiments on the dynamics and kinetic roughening of one-dimensional slow-combustion fronts in three grades of paper are reported. Extensive averaging of the data allows a detailed analysis of the spatial and temporal development of the interface fluctuations. The asymptotic scaling properties, on long length and time scales, are well described by the Kardar-Parisi-Zhang (KPZ) equation with short-range, uncorrelated noise. To obtain a more detailed picture of the strong-coupling fixed point, characteristic of the KPZ universality class, universal amplitude ratios, and the universal coupling constant are computed from the data and found to be in good agreement with theory. Below the spatial and temporal scales at which a cross-over takes place to the standard KPZ behavior, the fronts display higher apparent exponents and apparent multiscaling. In this regime the interface velocities are spatially and temporally correlated, and the distribution of the magnitudes of the effective noise has a power-law tail. The relation of the observed short-range behavior and the noise as determined from the local velocity fluctuations is discussed.Comment: RevTeX v3.1, 13 pages, 12 Postscript figures (uses epsf.sty), 3 tables; submitted to Phys. Rev.

    Comment on: `Pipe Network Model for Scaling of Dynamic Interfaces in Porous Media'

    Get PDF
    We argue that a proposed exponent identity [Phys. Rev. Lett 85, 1238 (2000)] for interface roughening in spontaneous imbibition is wrong. It rests on the assumption that the fluctuations are controlled by a single time scale, but liquid conservation imposes two distinct time scales.Comment: 1 page, to appear in Phys. Rev. Let
    • …
    corecore