5,046 research outputs found

    New Results from the MINOS Experiment

    Full text link
    In this paper we present the latest results from the MINOS Experiment. This includes a new measurement of the atmospheric neutrino oscillation parameters based on 3.36 x 10^20 protons-on-target of data and a first analysis of neutral current events in the Far Detector. The prospects for nu-e appearance measurements in MINOS are also discussed.Comment: 6 pages, 4 figures, for the Proceedings of the Neutrino 2008 Conference, Christchurch, N

    Effects of moisture on torsion and flexure properties of graphite-epoxy composites

    Get PDF
    The effects of moisture and temperature on unidirectional and multi-ply laminates of T300/934 and AS/3501 graphite-epoxy systems were investigated. Properties studied were static flexure strength, and flexure and torsion fatigue strengths at room temperature and at 74 C. Specimens with increased moisture content showed a reduced static flexure strength; water as the test environment had only a negligible influence. In flexure fatigue and torsion fatigue, the water environment caused somewhat reduced fatigue strengths at room temperature and significantly greater degradation in 74 C water. The failure mode in all cases was interlaminar delamination

    Impact absorbing blade mounts for variable pitch blades

    Get PDF
    A variable pitch blade and blade mount are reported that are suitable for propellers, fans and the like and which have improved impact resistance. Composite fan blades and blade mounting arrangements permit the blades to pivot relative to a turbine hub about an axis generally parallel to the centerline of the engine upon impact of a large foreign object, such as a bird. Centrifugal force recovery becomes the principal energy absorbing mechanism and a blade having improved impact strength is obtained

    Asymptotic methods for internal transonic flows

    Get PDF
    For many internal transonic flows of practical interest, some of the relevant nondimensional parameters typically are small enough that a perturbation scheme can be expected to give a useful level of numerical accuracy. A variety of steady and unsteady transonic channel and cascade flows is studied with the help of systematic perturbation methods which take advantage of this fact. Asymptotic representations are constructed for small changes in channel cross-section area, small flow deflection angles, small differences between the flow velocity and the sound speed, small amplitudes of imposed oscillations, and small reduced frequencies. Inside a channel the flow is nearly one-dimensional except in thin regions immediately downstream of a shock wave, at the channel entrance and exit, and near the channel throat. A study of two-dimensional cascade flow is extended to include a description of three-dimensional compressor-rotor flow which leads to analytical results except in thin edge regions which require numerical solution. For unsteady flow the qualitative nature of the shock-wave motion in a channel depends strongly on the orders of magnitude of the frequency and amplitude of impressed wall oscillations or fluctuations in back pressure. One example of supersonic flow is considered, for a channel with length large compared to its width, including the effect of separation bubbles and the possibility of self-sustained oscillations. The effect of viscosity on a weak shock wave in a channel is discussed

    Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part 2: Wall shear stress

    Get PDF
    An analysis is presented of the flow in the two inner layers, the Reynolds stress sublayer and the wall layer. Included is the calculation of the shear stress at the wall in the interaction region. The limit processes considered are those used for an inviscid flow

    A study of the interaction of a normal shock wave with a turbulent boundary layer at transonic speeds

    Get PDF
    An asymptotic description is derived for the interaction of a weak normal shock wave and a turbulent boundary layer along a plane wall. In the case studied the nondimensional friction velocity is small in comparison with the nondimensional shock strength, and the shock wave extends well into the boundary layer. Analytical results are described for the local pressure distribution and wall shear, and a criterion for incipient separation is proposed. A comparison of predicted pressures with available experimental data includes the effect of longitudinal wall curvature

    Automatic navigation of a long range rocket vehicle

    Get PDF
    The flight of a rocket vehicle in the equatorial plane of a rotating earth is considered with possible disturbances in the atmosphere due to changes in density, in temperature, and in wind speed. These atmospheric disturbances together with possible deviations in weight and in moment of inertia of the vehicle tend to change the flight path away from the normal flight path. The paper gives the condition for the proper cut-off time for the rocket power, and the proper corrections in the elevator angle so that the vehicle will land at the chosen destination in spite of such disturbances. A scheme of tracking and automatic navigation involving a high-speed computer and elevator servo is suggested for this purpose

    Magnetohydrodynamic Simulations Of Plasma Dynamics In The Magnetospheric Cusp Region

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2012The Earth's magnetospheric cusp regions are rich in interesting plasma physics. The geomagnetic cusps offer solar wind plasma a relatively easy entry point into the magnetosphere through magnetic reconnection with the interplanetary magnetic field. The cusp regions are characterized by various interesting and important observations such as low energy particle precipitation, significant outflow of ionospheric material, and the frequent presence of energetic particles in regions of depressed magnetic field strength. The physical mechanisms that lead to these observations is often unresolved, for instance the acceleration mechanism for energetic cusp populations is not understood, nor is it known what implications they may have on magnetospheric dynamics. It is however, well accepted that magnetic reconnection plays a critical role in the vicinity of the cusps and is likely responsible for much of the dynamics in the region. Modeling of the geomagnetic cusps is notoriously challenging. Global magnetospheric models have proven indispensable in the study of the interaction of the solar wind plasma with the Earth's magnetosphere, however, the exterior cusp region poses a significant challenge for these models due to their relatively small scale. I have developed a mesoscale cusp-like magnetic field model in order to provide a better resolution (up to 300 km) of the entire cusp region than is possible in these global models. Typical observational features of the high-altitude cusps are well reproduced by the simulation. Results for both strongly northward and strongly southward interplanetary magnetic field indicate extended regions of depressed magnetic field and strongly enhanced plasma beta (cusp diamagnetic cavities). The Alfvenic nature of the outer boundary between the cusp and magnetosheath, in addition to the flow characteristics in the region, indicate that magnetic reconnection plays an important role in structuring the high-altitude cusp region. The inner boundaries with magnetosphere are gradual transitions forming a clear funnel. These cavities further present a unique configuration in which reconnecting magnetic flux tubes may gain a significant amount of flux tube entropy (H = p1/gammaV) through topological changes due to magnetic reconnection
    corecore