72 research outputs found
Measurement of the Atmospheric Muon Charge Ratio at TeV Energies with MINOS
The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray
muon data since the beginning of August, 2003 at a depth of 2070
meters-water-equivalent in the Soudan Underground Laboratory, Minnesota, USA.
The data with both forward and reversed magnetic field running configurations
were combined to minimize systematic errors in the determination of the
underground muon charge ratio. When averaged, two independent analyses find the
charge ratio underground to be 1.374 +/- 0.004 (stat.) +0.012 -0.010(sys.).
Using the map of the Soudan rock overburden, the muon momenta as measured
underground were projected to the corresponding values at the surface in the
energy range 1-7 TeV. Within this range of energies at the surface, the MINOS
data are consistent with the charge ratio being energy independent at the two
standard deviation level. When the MINOS results are compared with measurements
at lower energies, a clear rise in the charge ratio in the energy range 0.3 --
1.0 TeV is apparent. A qualitative model shows that the rise is consistent with
an increasing contribution of kaon decays to the muon charge ratio.Comment: 16 pages, 17 figure
Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam
The velocity of a ~3 GeV neutrino beam is measured by comparing detection times at the near and far detectors of the MINOS experiment, separated by 734 km. A total of 473 far detector neutrino events was used to measure (v-c)/c=5.12.910-5 (at 68% C.L.). By correlating the measured energies of 258 charged-current neutrino events to their arrival times at the far detector, a limit is imposed on the neutrino mass of mnu<50 MeV/c2 (99% C.L.)
Recommended from our members
Measurement of the underground atmospheric muon charge ratio using the MINOS Near Detector
The magnetized MINOS Near Detector, at a depth of 225 mwe, is used to measure the atmospheric muon charge ratio. The ratio of observed positive to negative atmospheric muon rates, using 301 days of data, is measured to be 1.266±0.001(stat)_(-0.014)^(+0.015)(syst). This measurement is consistent with previous results from other shallow underground detectors and is 0.108±0.019(stat+syst) lower than the measurement at the functionally identical MINOS Far Detector at a depth of 2070 mwe. This increase in charge ratio as a function of depth is consistent with an increase in the fraction of muons arising from kaon decay for increasing muon surface energie
Recommended from our members
First Direct Observation of Muon Antineutrino Disappearance
This Letter reports the first direct observation of muon antineutrino disappearance. The MINOS experiment has taken data with an accelerator beam optimized for ν̅ _μ production, accumulating an exposure of 1.71×10^(20) protons on target. In the Far Detector, 97 charged current ν̅ _μ events are observed. The no-oscillation hypothesis predicts 156 events and is excluded at 6.3σ. The best fit to oscillation yields |Δm̅ 2|= [3.36=_(-0.40)^(+0.46)(stat)±0.06(syst)]x10^(-3)eV^2,sin^2(2θ̅)=0.86 _(-0.12)^(+0.11)(stat)±0.01(syst). The MINOS ν̅ _μ and ν̅ _μ measurements are consistent at the 2.0% confidence level, assuming identical underlying oscillation parameters
A Study of Muon Neutrino Disappearance Using the Fermilab Main Injector Neutrino Beam
We report the results of a search for muon-neutrino disappearance by the Main
Injector Neutrino Oscillation Search. The experiment uses two detectors
separated by 734 km to observe a beam of neutrinos created by the Neutrinos at
the Main Injector facility at Fermi National Accelerator Laboratory. The data
were collected in the first 282 days of beam operations and correspond to an
exposure of 1.27e20 protons on target. Based on measurements in the Near
Detector, in the absence of neutrino oscillations we expected 336 +/- 14
muon-neutrino charged-current interactions at the Far Detector but observed
215. This deficit of events corresponds to a significance of 5.2 standard
deviations. The deficit is energy dependent and is consistent with two-flavor
neutrino oscillations according to delta m-squared = 2.74e-3 +0.44/-0.26e-3
eV^2 and sin^2(2 theta) > 0.87 at 68% confidence level.Comment: In submission to Phys. Rev.
Neutrino and Antineutrino Inclusive Charged-current Cross Section Measurements with the MINOS Near Detector
The energy dependence of the neutrino-iron and antineutrino-iron inclusive
charged-current cross sections and their ratio have been measured using a
high-statistics sample with the MINOS Near Detector exposed to the NuMI beam
from the Main Injector at Fermilab. Neutrino and antineutrino fluxes were
determined using a low hadronic energy subsample of charged-current events. We
report measurements of neutrino-Fe (antineutrinoFe) cross section in the energy
range 3-50 GeV (5-50 GeV) with precision of 2-8% (3-9%) and their ratio which
is measured with precision 2-8%. The data set spans the region from low energy,
where accurate measurements are sparse, up to the high-energy scaling region
where the cross section is well understood.Comment: accepted by PR
Recommended from our members
Search for sterile neutrino mixing in the MINOS long-baseline experiment
A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18×10^(20) protons on target in which neutrinos of energies between ∼500  MeV and 120 GeV are produced predominantly as ν_μ, the visible energy spectrum of candidate neutral-current reactions in the MINOS far detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the ν_μ flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles θ_(24) and θ_(34) are constrained to be less than 11° and 56° at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime τ_3/m_3>2.1×10^(-12) s/eV at 90% C.L
Recommended from our members
Active to Sterile Neutrino Mixing Limits from Neutral-Current Interactions in MINOS
Results are reported from a search for active to sterile neutrino oscillations in the MINOS long-baseline experiment, based on the observation of neutral-current neutrino interactions, from an exposure to the NuMI neutrino beam of 7.07×10^(20) protons on target. A total of 802 neutral-current event candidates is observed in the Far Detector, compared to an expected number of 754±28(stat)±37(syst) for oscillations among three active flavors. The fraction f_s of disappearing ν_μ that may transition to ν_s is found to be less than 22% at the 90% C.L
Recommended from our members
Measurement of the Neutrino Mass Splitting and Flavor Mixing by MINOS
Measurements of neutrino oscillations using the disappearance of muon neutrinos from the Fermilab NuMI neutrino beam as observed by the two MINOS detectors are reported. New analysis methods have been applied to an enlarged data sample from an exposure of 7.25×10^(20) protons on target. A fit to neutrino oscillations yields values of |Δm^2|=(2.32_(-0.08)^(+0.12))×10^(-3)  eV^2 for the atmospheric mass splitting and sin^2(2θ)>0.90 (90% C.L.) for the mixing angle. Pure neutrino decay and quantum decoherence hypotheses are excluded at 7 and 9 standard deviations, respectively
Search for sterile neutrino mixing in the MINOS long-baseline experiment
A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18×1020 protons on target in which neutrinos of energies between ~500¿¿MeV and 120 GeV are produced predominantly as ¿µ, the visible energy spectrum of candidate neutral-current reactions in the MINOS far detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the ¿µ flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles ¿24 and ¿34 are constrained to be less than 11° and 56° at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime t3/m3>2.1×10-12¿¿s/eV at 90% C.L
- …