5 research outputs found
Hogyan kezeljĂŒnk egy radioaktĂv anyaggal szennyezett bƱnĂŒgyi helyszĂnt?
Radioactive materials have become a marked target for criminal and terrorist organizations in recent years, as they can be effective tools for generating panic and serious economic damage when used in a variety of weapons (e.g. explosive devices capable of dispersing radioactive material). In addition, radioactive material has been used in several cases to commit crimes such as poisoning or radiation exposure of potential target persons. The most famous matter is the so-called âLitvinenko caseâ, in which a Russian intelligence officer was poisoned with polonium in 2006. In addition to the international cases, however, radioactive materials are also found in Hungary from time to time during home searches. Even the detection of these materials can be challenging in the absence of appropriate detection equipment. Their exact identification, collection and specific examination requires specialized expertise. If the crime scene personnel do not detect the presence of radioactivity at the scene in a timely manner (e. g. because it cannot be detected without measuring equipment), the persons working there may subsequently suffer serious damage to health, as well as large areas and objects can be contaminated by dispersed radioactive material. It can also cause serious economic damage. This article describes an operating procedure for the professional respond to crime scenes contaminated with radioactive material, developed by experts of the Hungarian National Police, National Bureau of Investigation, Criminal Forensics Department and radiologists at the Centre for Energy Research in the frame of a project supported by the Home Affairs Security Fund.A radioaktĂv anyagok az utĂłbbi Ă©vekben kifejezett cĂ©lpontjĂĄvĂĄ vĂĄltak bƱnĂŒgyiĂ©s terrorszervezeteknek, mivel azokat kĂŒlönfĂ©le fegyverekben alkalmazva (pĂ©ldĂĄul radioaktĂv anyagot szĂ©tszĂłrni kĂ©pes robbanĂłszerkezetekben) hatĂĄsos pĂĄnikkeltĆ Ă©s komoly gazdasĂĄgi kĂĄrokat okozĂł eszközök lehetnek. Emellett több esetben alkalmaztak radioaktĂv anyagot olyan bƱncselekmĂ©nyek elkövetĂ©sĂ©re is, mint mĂ©rgezĂ©s vagy sugĂĄrbehatĂĄs potenciĂĄlis cĂ©lszemĂ©lyek esetĂ©n. A leghĂresebb eset az Ășgynevezett âLitvinyenko-ĂŒgyâ, amely sorĂĄn egy orosz ĂĄllambiztonsĂĄgi tisztet mĂ©rgeztek meg polĂłniummal 2006-ban. A nemzetközi esetek mellett azonban hazĂĄnkban is Ășjra Ă©s Ășjra felbukkan radioaktĂv anyag a kutatĂĄsok sorĂĄn. Ezen anyagoknak mĂĄr a felismerĂ©se is kihĂvĂĄst jelenthet a megfelelĆ detektĂĄlĂł eszközök hiĂĄnyĂĄban. Pontos azonosĂtĂĄsuk, begyƱjtĂ©sĂŒk Ă©s szakszerƱ vizsgĂĄlatuk pedig speciĂĄlis szakĂ©rtelmet kĂvĂĄn. Amennyiben a helyszĂni tevĂ©kenysĂ©g sorĂĄn a szemlĂ©t lefolytatĂł egysĂ©g nem Ă©szleli idĆben a radioaktĂv anyag jelenlĂ©tĂ©t (mert pĂ©ldĂĄul mĂ©rĆberendezĂ©s nĂ©lkĂŒl nem kimutathatĂł), Ășgy az ott dolgozĂł szemĂ©lyzet a kĂ©sĆbbiekben komoly egĂ©szsĂ©gĂŒgyi kĂĄrosodĂĄst szenvedhet, tovĂĄbbĂĄ a szĂ©thurcolt radioaktĂv anyag nagy terĂŒletet, tĂĄrgyakat is beszennyezhet, amelyek mentesĂtĂ©se komoly anyagi kĂĄrral is jĂĄr. Jelen cikkben egy eljĂĄrĂĄsrendrĆl szĂĄmolunk be, amely sugĂĄrzĂł anyaggal szennyezett helyszĂnek szakszerƱ feldolgozĂĄsĂĄt cĂ©lozza s amely a KĂ©szenlĂ©ti RendĆrsĂ©g Nemzeti NyomozĂł Iroda, BƱnĂŒgyi Technikai FĆosztĂĄlyĂĄnak bƱnĂŒgyi helyszĂnelĆi Ă©s az EnergiatudomĂĄnyi KutatĂłközpont radiolĂłgus szakĂ©rtĆi között kerĂŒlt kidolgozĂĄsra egy BelsĆ BiztonsĂĄgi Alap ĂĄltal tĂĄmogatott projekt keretĂ©ben
Hogyan kezeljĂŒk a radioaktĂv anyaggal szennyezett bƱnĂŒgyi helyszĂneket?
Radioactive materials have become an explicit target for criminal and terrorist organizations in recent years, as they can be effective tools for panic and serious economic damage generation when used in a variety of weapons (e.g. explosive devices capable of dispersing radioactive material). In addition, radioactive material has been used in several cases to commit crimes such as poisoning or radiation exposure to potential target persons. The most famous is the so-called âLitvinenko caseâ, in which a Russian intelligence officer was poisoned with polonium in 2006. In addition to the international cases, however, radioactive material is also found in Hungary time-to-time during home searches. Even the detection of these materials can be challenging in the absence of appropriate detection equipment. Their exact identification, collection and specific examination requires specialized expertise. If the crime scene personnel does not detect the presence of radioactivity at the scene in a timely manner (e.g, because it cannot be detected without measuring equipment), the persons working there may subsequently suffer serious damage to health, as well as large areas and objects can be contaminated by dispersed radioactive material. It can also cause serious economic damage. This article describes an operating procedure for the professional respond of crime scenes contaminated with radioactive material, developed by experts of the Hungarian National Police, National Bureau of Investigation, Criminal Forensics Department and radiologists at the Centre for Energy Research in the frame of a project supported by the Home Affairs Security Fund.A radioaktĂv anyagok az utĂłbbi Ă©vekben a bƱnözĆ Ă©s terrorista szervezetek kiemelt cĂ©lpontjai lettek, mivel hatĂ©kony eszközkĂ©nt szolgĂĄlhatnak pĂĄnikkeltĂ©sre Ă©s sĂșlyos gazdasĂĄgi kĂĄrok okozĂĄsĂĄra kĂŒlönfĂ©le fegyverekben törtĂ©nĆ hasznĂĄlat esetĂ©n (pl. radioaktĂv anyag szĂ©tszĂłrĂĄsĂĄra alkalmas robbanĂł szerkezetek). RĂĄadĂĄsul sok esetben hasznĂĄltak radioaktĂv anyagokat bƱncselekmĂ©nyek elkövetĂ©sĂ©re is, mint pĂ©ldĂĄul potenciĂĄlis cĂ©lszemĂ©lyek megmĂ©rgezĂ©se, vagy sugĂĄrzĂĄsnak kitĂ©tele. A legismertebb az Ășgynevezett âLitvinyenko ĂŒgyâ, amely sorĂĄn egy orosz titkosszolgĂĄlati tisztet polĂłniummal mĂ©rgeztek meg 2006-ban. A nemzetközi eseteken tĂșlmenĆen hĂĄzkutatĂĄsok sorĂĄn idĆnkĂ©nt MagyarorszĂĄgon is talĂĄlnak radioaktĂv anyagokat. Az ilyen anyagok felfedezĂ©se is komoly problĂ©ma lehet megfelelĆ mĂ©rĆkĂ©szĂŒlĂ©k hĂjĂĄn. Ezek pontos felismerĂ©se, összegyƱjtĂ©se Ă©s specifikus kivizsgĂĄlĂĄsa speciĂĄlis szakĂ©rtelmet kĂvĂĄn. Ha a bƱnĂŒgy helyszĂnĂ©n a vizsgĂĄlĂłk nem fedezik fel idĆben a radioaktivitĂĄs jelenlĂ©tĂ©t (pl. mivel az megfelelĆ mĂ©rĆeszköz hiĂĄnyĂĄban nem fedezhetĆ fel), az ott dolgozĂł szemĂ©lyek a kĂ©sĆbbiek sorĂĄn sĂșlyos egĂ©szsĂ©gkĂĄrosodĂĄst szenvedhetnek, tovĂĄbbĂĄ nagy terĂŒletek Ă©s tĂĄrgyak is szennyezĆdhetnek a szĂ©tszĂłrĂłdĂł radioaktĂv anyag miatt. Ezen kĂvĂŒl sĂșlyos gazdasĂĄgi kĂĄrok is keletkezhetnek. A jelen cikk egy olyan operatĂv eljĂĄrĂĄst Ăr le a radioaktĂv anyagokkal szennyezett bƱnĂŒgyi helyszĂnek szakszerƱ kezelĂ©sĂ©rĆl, amelyet a Magyar RendĆrsĂ©g, a Nemzeti NyomozĂł Iroda, a BƱnĂŒgyi IgazsĂĄgĂŒgyi SzakĂ©rtĆi IgazgatĂłsĂĄg szakemberei, valamint a Központi EnergiakutatĂĄs radiolĂłgusai fejlesztettek ki a BelsĆ BiztonsĂĄgi Alap ĂĄltal tĂĄmogatott projekt keretĂ©ben
The geochemical role of B-10 enriched boric acid in cemented liquid radioactive wastes
Boric acid is a significant radioactive waste generated during the operation of nuclear power plants. Cementitious materials have been widely studied for the immobilization of boric acid. The generally used natural boric acid has been replaced by enriched boric acid for geochemical reasons and are expected to have varied behaviors in cementitious matrices. Results showed that simulated enriched/natural boric acid liquid wastes mostly contain boron in B(OH)â
4 and B5O6(OH)â
4 ionic forms, but the mass ratio of these species is higher in enriched boric acid solutions. In function with the concentration of enriched/natural boric acid, the solidified cements show different mineralogy
Natural Radioactivity in Drinking Water in the Surroundings of a Metamorphic Outcrop in Hungary: The Hydrogeological Answer to Practical Problems
Groundwater quality constantly evolves through rockâwater interactions, which can enrich groundwater with undesirable elements such as naturally occurring radionuclides. The aim of this study was to understand the cause of gross alpha activity exceeding the screening value of 0.1 Bq Lâ1 measured in groundwater-derived drinking water in the vicinity of a metamorphic outcrop in Hungary. As groundwater quality is strongly dependent on the properties of groundwater flow systems, environmental tracers (ÎŽ2H and ÎŽ18O composition, 226Ra, 222Rn, total U activity concentration, and 234U/238U ratio) and hydraulic evaluation were applied to understand groundwater dynamics. The collected groundwater samples had total U activities up to 540 mBq Lâ1, which translates into an indicative dose below the drinking water parametric value. However, in the presence of dissolved uranium, the ÎŽ2H (â52.6â(â83.4)) and ÎŽ18O (â7.17â(â11.96)) values led to the conclusion that local flow systems were sampled that are known to be most vulnerable to any changes in their recharge area. The results confirm that the groundwater flow system approach involving environmental tracers and hydraulic evaluation is a powerful tool for identifying the cause of natural radioactivity in groundwater-derived drinking water