5 research outputs found

    Hogyan kezeljĂŒnk egy radioaktĂ­v anyaggal szennyezett bƱnĂŒgyi helyszĂ­nt?

    Get PDF
    Radioactive materials have become a marked target for criminal and terrorist organizations in recent years, as they can be effective tools for generating panic and serious economic damage when used in a variety of weapons (e.g. explosive devices capable of dispersing radioactive material). In addition, radioactive material has been used in several cases to commit crimes such as poisoning or radiation exposure of potential target persons. The most famous matter is the so-called ‘Litvinenko case’, in which a Russian intelligence officer was poisoned with polonium in 2006. In addition to the international cases, however, radioactive materials are also found in Hungary from time to time during home searches. Even the detection of these materials can be challenging in the absence of appropriate detection equipment. Their exact identification, collection and specific examination requires specialized expertise. If the crime scene personnel do not detect the presence of radioactivity at the scene in a timely manner (e. g. because it cannot be detected without measuring equipment), the persons working there may subsequently suffer serious damage to health, as well as large areas and objects can be contaminated by dispersed radioactive material. It can also cause serious economic damage. This article describes an operating procedure for the professional respond to crime scenes contaminated with radioactive material, developed by experts of the Hungarian National Police, National Bureau of Investigation, Criminal Forensics Department and radiologists at the Centre for Energy Research in the frame of a project supported by the Home Affairs Security Fund.A radioaktĂ­v anyagok az utĂłbbi Ă©vekben kifejezett cĂ©lpontjĂĄvĂĄ vĂĄltak bƱnĂŒgyiĂ©s terrorszervezeteknek, mivel azokat kĂŒlönfĂ©le fegyverekben alkalmazva (pĂ©ldĂĄul radioaktĂ­v anyagot szĂ©tszĂłrni kĂ©pes robbanĂłszerkezetekben) hatĂĄsos pĂĄnikkeltƑ Ă©s komoly gazdasĂĄgi kĂĄrokat okozĂł eszközök lehetnek. Emellett több esetben alkalmaztak radioaktĂ­v anyagot olyan bƱncselekmĂ©nyek elkövetĂ©sĂ©re is, mint mĂ©rgezĂ©s vagy sugĂĄrbehatĂĄs potenciĂĄlis cĂ©lszemĂ©lyek esetĂ©n. A leghĂ­resebb eset az Ășgynevezett „Litvinyenko-ĂŒgy”, amely sorĂĄn egy orosz ĂĄllambiztonsĂĄgi tisztet mĂ©rgeztek meg polĂłniummal 2006-ban. A nemzetközi esetek mellett azonban hazĂĄnkban is Ășjra Ă©s Ășjra felbukkan radioaktĂ­v anyag a kutatĂĄsok sorĂĄn. Ezen anyagoknak mĂĄr a felismerĂ©se is kihĂ­vĂĄst jelenthet a megfelelƑ detektĂĄlĂł eszközök hiĂĄnyĂĄban. Pontos azonosĂ­tĂĄsuk, begyƱjtĂ©sĂŒk Ă©s szakszerƱ vizsgĂĄlatuk pedig speciĂĄlis szakĂ©rtelmet kĂ­vĂĄn. Amennyiben a helyszĂ­ni tevĂ©kenysĂ©g sorĂĄn a szemlĂ©t lefolytatĂł egysĂ©g nem Ă©szleli idƑben a radioaktĂ­v anyag jelenlĂ©tĂ©t (mert pĂ©ldĂĄul mĂ©rƑberendezĂ©s nĂ©lkĂŒl nem kimutathatĂł), Ășgy az ott dolgozĂł szemĂ©lyzet a kĂ©sƑbbiekben komoly egĂ©szsĂ©gĂŒgyi kĂĄrosodĂĄst szenvedhet, tovĂĄbbĂĄ a szĂ©thurcolt radioaktĂ­v anyag nagy terĂŒletet, tĂĄrgyakat is beszennyezhet, amelyek mentesĂ­tĂ©se komoly anyagi kĂĄrral is jĂĄr. Jelen cikkben egy eljĂĄrĂĄsrendrƑl szĂĄmolunk be, amely sugĂĄrzĂł anyaggal szennyezett helyszĂ­nek szakszerƱ feldolgozĂĄsĂĄt cĂ©lozza s amely a KĂ©szenlĂ©ti RendƑrsĂ©g Nemzeti NyomozĂł Iroda, BƱnĂŒgyi Technikai FƑosztĂĄlyĂĄnak bƱnĂŒgyi helyszĂ­nelƑi Ă©s az EnergiatudomĂĄnyi KutatĂłközpont radiolĂłgus szakĂ©rtƑi között kerĂŒlt kidolgozĂĄsra egy BelsƑ BiztonsĂĄgi Alap ĂĄltal tĂĄmogatott projekt keretĂ©ben

    Hogyan kezeljĂŒk a radioaktĂ­v anyaggal szennyezett bƱnĂŒgyi helyszĂ­neket?

    Get PDF
    Radioactive materials have become an explicit target for criminal and terrorist organizations in recent years, as they can be effective tools for panic and serious economic damage generation when used in a variety of weapons (e.g. explosive devices capable of dispersing radioactive material). In addition, radioactive material has been used in several cases to commit crimes such as poisoning or radiation exposure to potential target persons. The most famous is the so-called ‘Litvinenko case’, in which a Russian intelligence officer was poisoned with polonium in 2006. In addition to the international cases, however, radioactive material is also found in Hungary time-to-time during home searches. Even the detection of these materials can be challenging in the absence of appropriate detection equipment. Their exact identification, collection and specific examination requires specialized expertise. If the crime scene personnel does not detect the presence of radioactivity at the scene in a timely manner (e.g, because it cannot be detected without measuring equipment), the persons working there may subsequently suffer serious damage to health, as well as large areas and objects can be contaminated by dispersed radioactive material. It can also cause serious economic damage. This article describes an operating procedure for the professional respond of crime scenes contaminated with radioactive material, developed by experts of the Hungarian National Police, National Bureau of Investigation, Criminal Forensics Department and radiologists at the Centre for Energy Research in the frame of a project supported by the Home Affairs Security Fund.A radioaktĂ­v anyagok az utĂłbbi Ă©vekben a bƱnözƑ Ă©s terrorista szervezetek kiemelt cĂ©lpontjai lettek, mivel hatĂ©kony eszközkĂ©nt szolgĂĄlhatnak pĂĄnikkeltĂ©sre Ă©s sĂșlyos gazdasĂĄgi kĂĄrok okozĂĄsĂĄra kĂŒlönfĂ©le fegyverekben törtĂ©nƑ hasznĂĄlat esetĂ©n (pl. radioaktĂ­v anyag szĂ©tszĂłrĂĄsĂĄra alkalmas robbanĂł szerkezetek). RĂĄadĂĄsul sok esetben hasznĂĄltak radioaktĂ­v anyagokat bƱncselekmĂ©nyek elkövetĂ©sĂ©re is, mint pĂ©ldĂĄul potenciĂĄlis cĂ©lszemĂ©lyek megmĂ©rgezĂ©se, vagy sugĂĄrzĂĄsnak kitĂ©tele. A legismertebb az Ășgynevezett ‘Litvinyenko ĂŒgy’, amely sorĂĄn egy orosz titkosszolgĂĄlati tisztet polĂłniummal mĂ©rgeztek meg 2006-ban. A nemzetközi eseteken tĂșlmenƑen hĂĄzkutatĂĄsok sorĂĄn idƑnkĂ©nt MagyarorszĂĄgon is talĂĄlnak radioaktĂ­v anyagokat. Az ilyen anyagok felfedezĂ©se is komoly problĂ©ma lehet megfelelƑ mĂ©rƑkĂ©szĂŒlĂ©k hĂ­jĂĄn. Ezek pontos felismerĂ©se, összegyƱjtĂ©se Ă©s specifikus kivizsgĂĄlĂĄsa speciĂĄlis szakĂ©rtelmet kĂ­vĂĄn. Ha a bƱnĂŒgy helyszĂ­nĂ©n a vizsgĂĄlĂłk nem fedezik fel idƑben a radioaktivitĂĄs jelenlĂ©tĂ©t (pl. mivel az megfelelƑ mĂ©rƑeszköz hiĂĄnyĂĄban nem fedezhetƑ fel), az ott dolgozĂł szemĂ©lyek a kĂ©sƑbbiek sorĂĄn sĂșlyos egĂ©szsĂ©gkĂĄrosodĂĄst szenvedhetnek, tovĂĄbbĂĄ nagy terĂŒletek Ă©s tĂĄrgyak is szennyezƑdhetnek a szĂ©tszĂłrĂłdĂł radioaktĂ­v anyag miatt. Ezen kĂ­vĂŒl sĂșlyos gazdasĂĄgi kĂĄrok is keletkezhetnek. A jelen cikk egy olyan operatĂ­v eljĂĄrĂĄst Ă­r le a radioaktĂ­v anyagokkal szennyezett bƱnĂŒgyi helyszĂ­nek szakszerƱ kezelĂ©sĂ©rƑl, amelyet a Magyar RendƑrsĂ©g, a Nemzeti NyomozĂł Iroda, a BƱnĂŒgyi IgazsĂĄgĂŒgyi SzakĂ©rtƑi IgazgatĂłsĂĄg szakemberei, valamint a Központi EnergiakutatĂĄs radiolĂłgusai fejlesztettek ki a BelsƑ BiztonsĂĄgi Alap ĂĄltal tĂĄmogatott projekt keretĂ©ben

    The geochemical role of B-10 enriched boric acid in cemented liquid radioactive wastes

    No full text
    Boric acid is a significant radioactive waste generated during the operation of nuclear power plants. Cementitious materials have been widely studied for the immobilization of boric acid. The generally used natural boric acid has been replaced by enriched boric acid for geochemical reasons and are expected to have varied behaviors in cementitious matrices. Results showed that simulated enriched/natural boric acid liquid wastes mostly contain boron in B(OH)− 4 and B5O6(OH)− 4 ionic forms, but the mass ratio of these species is higher in enriched boric acid solutions. In function with the concentration of enriched/natural boric acid, the solidified cements show different mineralogy

    Natural Radioactivity in Drinking Water in the Surroundings of a Metamorphic Outcrop in Hungary: The Hydrogeological Answer to Practical Problems

    Get PDF
    Groundwater quality constantly evolves through rock–water interactions, which can enrich groundwater with undesirable elements such as naturally occurring radionuclides. The aim of this study was to understand the cause of gross alpha activity exceeding the screening value of 0.1 Bq L−1 measured in groundwater-derived drinking water in the vicinity of a metamorphic outcrop in Hungary. As groundwater quality is strongly dependent on the properties of groundwater flow systems, environmental tracers (ή2H and ή18O composition, 226Ra, 222Rn, total U activity concentration, and 234U/238U ratio) and hydraulic evaluation were applied to understand groundwater dynamics. The collected groundwater samples had total U activities up to 540 mBq L−1, which translates into an indicative dose below the drinking water parametric value. However, in the presence of dissolved uranium, the ή2H (−52.6–(−83.4)) and ή18O (−7.17–(−11.96)) values led to the conclusion that local flow systems were sampled that are known to be most vulnerable to any changes in their recharge area. The results confirm that the groundwater flow system approach involving environmental tracers and hydraulic evaluation is a powerful tool for identifying the cause of natural radioactivity in groundwater-derived drinking water
    corecore