13 research outputs found

    Understanding cannabinoid receptors: structure and function

    Get PDF
    The endocannabinoid system (ECS) consists of the endocannabinoids, cannabinoid receptors and the enzymes that synthesize and degrade endocannabinoids. The whole EC system plays an important role in the proper functioning of the central and autonomic nervous system. ECS is involved in the regulation of the body energy and in the functioning of the endocrine system. It can affect on the regulation of emotional states, motoric movement, operations of the endocrine, immune and digestive system. Many of the effects of cannabinoids are mediated by G coupled –protein receptors: CB1, CB2 and GPR55 but also of transient receptor potential channels (TRPs) which not only induce the sensation of pain but also support inflammation via secretion of pro-inflammatory neuropeptides. In this review work we briefly summarize the role and action of cannabinoid receptors CB1 and CB2, protein-coupled receptor 55 (GPR55) and transient receptor potential vanilloid 1 (TRPV1)

    Why are western diet and western lifestyle pro-inflammatory risk factors of celiac disease?

    Get PDF
    The prevalence of celiac disease increased in recent years. In addition to the genetic and immunological factors, it appears that environmental determinants are also involved in the pathophysiology of celiac disease. Gastrointestinal infections impact the development of celiac disease. Current research does not directly confirm the protective effect of natural childbirth and breastfeeding on celiac disease. However, it seems that in genetically predisposed children, the amount of gluten introduced into the diet may have an impact on celiac disease development. Also western lifestyle, including western dietary patterns high in fat, sugar, and gliadin, potentially may increase the risk of celiac disease due to changes in intestinal microbiota, intestinal permeability, or mucosal inflammation. Further research is needed to expand the knowledge of the relationship between environmental factors and the development of celiac disease to define evidence-based preventive interventions against the development of celiac disease. The manuscript summarizes current knowledge on factors predisposing to the development of celiac disease including factors associated with the western lifestyle

    Application of Genetically Engineered Pigs in Biomedical Research

    No full text
    Progress in genetic engineering over the past few decades has made it possible to develop methods that have led to the production of transgenic animals. The development of transgenesis has created new directions in research and possibilities for its practical application. Generating transgenic animal species is not only aimed towards accelerating traditional breeding programs and improving animal health and the quality of animal products for consumption but can also be used in biomedicine. Animal studies are conducted to develop models used in gene function and regulation research and the genetic determinants of certain human diseases. Another direction of research, described in this review, focuses on the use of transgenic animals as a source of high-quality biopharmaceuticals, such as recombinant proteins. The further aspect discussed is the use of genetically modified animals as a source of cells, tissues, and organs for transplantation into human recipients, i.e., xenotransplantation. Numerous studies have shown that the pig (Sus scrofa domestica) is the most suitable species both as a research model for human diseases and as an optimal organ donor for xenotransplantation. Short pregnancy, short generation interval, and high litter size make the production of transgenic pigs less time-consuming in comparison with other livestock species This review describes genetically modified pigs used for biomedical research and the future challenges and perspectives for the use of the swine animal models

    Allosteric Modulation of Cannabinoid Receptor 1—Current Challenges and Future Opportunities

    No full text
    The cannabinoid receptor type 1 (CB1R), a G protein-coupled receptor (GPCR), plays an essential role in the control of many physiological processes such as hunger, memory loss, gastrointestinal activity, catalepsy, fear, depression, and chronic pain. Therefore, it is an attractive target for drug discovery to manage pain, neurodegenerative disorders, obesity, and substance abuse. However, the psychoactive adverse effects, generated by CB1R activation in the brain, limit the use of the orthosteric CB1R ligands as drugs. The discovery of CB1R allosteric modulators during the last decade provided new tools to target the CB1R. Moreover, application of the site-directed mutagenesis in combination with advanced physical methods, especially X-ray crystallography and computational modeling, has opened new horizons for understanding the complexity of the structure, function, and activity of cannabinoid receptors. In this paper, we present the latest advances in research on the CB1R, its allosteric modulation and allosteric ligands, and their translational potential. We focused on structural essentials of the cannabinoid 1 receptor- ligand (drug) interactions, as well as modes of CB1R signaling regulation

    What Role Does the Endocannabinoid System Play in the Pathogenesis of Obesity?

    No full text
    The endocannabinoid system (ECS) is an endogenous signaling system formed by specific receptors (cannabinoid type 1 and type 2 (CB1 and CB2)), their endogenous ligands (endocannabinoids), and enzymes involved in their synthesis and degradation. The ECS, centrally and peripherally, is involved in various physiological processes, including regulation of energy balance, promotion of metabolic process, food intake, weight gain, promotion of fat accumulation in adipocytes, and regulation of body homeostasis; thus, its overactivity may be related to obesity. In this review, we try to explain the role of the ECS and the impact of genetic factors on endocannabinoid system modulation in the pathogenesis of obesity, which is a global and civilizational problem affecting the entire world population regardless of age. We also emphasize that the search for potential new targets for health assessment, treatment, and the development of possible therapies in obesity is of great importance

    Strong Hereditary Predispositions to Colorectal Cancer

    No full text
    Cancer is one of the most common causes of death worldwide. A strong predisposition to cancer is generally only observed in colorectal cancer (5% of cases) and breast cancer (2% of cases). Colorectal cancer is the most common cancer with a strong genetic predisposition, but it includes dozens of various syndromes. This group includes familial adenomatous polyposis, attenuated familial adenomatous polyposis, MUTYH-associated polyposis, NTHL1-associated polyposis, Peutz–Jeghers syndrome, juvenile polyposis syndrome, Cowden syndrome, Lynch syndrome, and Muir–Torre syndrome. The common symptom of all these diseases is a very high risk of colorectal cancer, but depending on the condition, their course is different in terms of age and range of cancer occurrence. The rate of cancer development is determined by its conditioning genes, too. Hereditary predispositions to cancer of the intestine are a group of symptoms of heterogeneous diseases, and their proper diagnosis is crucial for the appropriate management of patients and their successful treatment. Mutations of specific genes cause strong colorectal cancer predispositions. Identifying mutations of predisposing genes will support proper diagnosis and application of appropriate screening programs to avoid malignant neoplasm

    Pleiotropic Effects of Vitamin D in Patients with Inflammatory Bowel Diseases

    No full text
    The multifaceted activity of vitamin D in patients with inflammatory bowel disease (IBD) presents a challenge for further research in this area. Vitamin D is involved in the regulation of bone mineral metabolism, it participates in the regulation of the immune system, and it is an underlying factor in the pathogenesis of IBD. Additionally, vitamin D affects Th1 and Th2 lymphocytes, influencing the release of cytokines and inhibiting tumor necrosis factor (TNF) expression and the wnt/β-catenin pathway. As far as IBDs are concerned, they are associated with microbiota dysbiosis, abnormal inflammatory response, and micronutrient deficiency, including vitamin D hypovitaminosis. In turn, the biological activity of active vitamin D is regulated by the vitamin D receptor (VDR) which is associated with several processes related to IBD. Therefore, in terms of research on vitamin D supplementation in IBD patients, it is essential to understand the metabolic pathways and genetic determinants of vitamin D, as well as to identify the environmental factors they are subject to, not only in view of osteoporosis prevention and therapy, but primarily concerning modulating the course and supplementation of IBD pharmacotherapy
    corecore